Convergent Cenozoic CO₂ history

David J. Beerling and Dana L. Royer

Reconstructions of atmospheric carbon dioxide concentrations over the past 65 million years are heading towards consensus. It is time for systematic testing of the proxies, against measurements and against each other.

tmospheric carbon dioxide is clearly a primary driver of global temperature change¹, but efforts to slow anthropogenic emissions from fossil fuel burning and land use change are failing. Average increases in the rates of fossil fuel CO₂ emissions more than tripled from 1% per year in the 1990s to 3.7% per year in the following decade². The Earth's atmosphere is steadily heading towards a burden of greenhouse gases not seen for some 20 million years. This burden will lead to a warmer future both in our lifetime and for generations to come as the energy balance of the Earth system slowly comes into equilibrium with rising greenhouse gas concentrations. Our planet's climatic future can be estimated from an understanding of ancient climate change without recourse to computer models of Earth's climate system — but only if we have reliable information on past concentrations of CO₂ in the atmosphere³.

The past 65 million years (Myr) of Earth history is known as the Cenozoic era and encompasses large climate variations, including the transition from an ice-free planet to the onset of the Pleistocene glacial-interglacial cycles. This interval also saw the origin and worldwide diversification of grasses with the C_4 photosynthetic pathway that today dominate savannas⁴. Over the past 50 Myr, the Cenozoic climate trend is characterized by a deep-sea cooling of approximately 12 °C thought to have been forced by changes in atmospheric greenhouse gas composition³.

A decade ago, efforts to reconstruct atmospheric CO_2 levels during this era showed fundamental disagreements between different proxy indicators of atmospheric CO_2 concentrations⁵. This was especially true for the first half of the Cenozoic, with discrepancies between proxies⁵ spanning a range from less than 300 ppm to more than 3,000 ppm. Our

Figure 1 | Earth's Cenozoic atmospheric CO_2 history by proxy. Deep-sea temperatures³ (upper panel) generally track the estimates of atmospheric CO_2 (lower panel) reconstructed from terrestrial and marine proxies following recent revisions (see Supplementary Information). Errors represent reported uncertainties. Symbols with arrows indicate either upper or lower limits. The vertical grey bar on the right axis indicates glacial-interglacial CO_2 range from ice cores. The top blue bar indicates approximate timing of ice-sheet development on Antarctica. Horizontal dashed line indicates the present-day atmospheric CO_2 concentration (390 ppm).

extensive compilation of 370 revised estimates of Cenozoic CO₂ levels (see Supplementary Information) reveals better agreement and documents a coherent pattern of CO_2 change, with a clear connection to global temperature

(Fig. 1). Notably, peak Cenozoic warmth 52 Myr ago corresponds with maximum reconstructed CO_2 , and the rapid inception of Antarctic glaciation to the Eocene– Oligocene boundary (33–34 Myr ago) follows a sharp fall in CO_2 .

Evolving CO₂ proxy science

Development of proxies of atmospheric CO₂ levels to constrain the evolution of greenhouse gas concentrations in the Earth's atmosphere represents a formidable interdisciplinary scientific challenge. The process begins with identifying a clear response in a biological or geochemical system to changes in atmospheric or oceanic CO₂ concentrations. This response must be sufficiently large to be detected in the fossil or sedimentary record and it must persist in the fossil record without alteration at a later stage. If these conditions are met, the proxy can be calibrated against modern systems. Finally, the proxy must be shown to detect known changes in atmospheric CO₂ concentrations over a time span also covered by independent reconstructions or records.

Although each stage requires assumptions and introduces errors, the challenges are not insurmountable. Several CO₂ proxies for both terrestrial and marine realms are widely employed⁵, with others continuing to become available^{6,7} (Fig. 2). Many of these proxies have been applied to reconstructing Cenozoic CO₂ levels (Fig. 1), but of these, four have been specifically identified by the 2007 report of the Intergovernmental Panel on Climate Change⁸ as showing the most promise. The two terrestrial-based proxies are based on the abundance of stomatal pores on fossil leaves and on the carbon isotope composition of carbonates in fossil soils. The two marine-based examples use the carbon isotope composition of phytoplankton and the boron isotope composition of fossil foraminifera.

Recent advances in the science underpinning key stages of development in all four of these proxies are refining estimates of ancient CO₂ levels. Most noticeably, the rigorous assessment of biological respiration and carbonate formation in soils has reduced CO₂ estimates from fossil soils by ~50%, thereby largely resolving their longstanding discrepancy with other methods9. The boron CO₂ proxy has also significantly improved, and newer CO₂ reconstructions address earlier limitations associated with an incorrect isotopic fractionation factor¹⁰, diagenetic alteration, and gaps in our understanding in the evolution of

Figure 2 | Fossil materials recording Earth's past CO_2 history. **a**, Fossil conifer cuticles from *Metasequoia* with stomata and epidermal cells; **b**, carbonate nodules; **c**, fossils soils known as palaeosols; and **d**, fossil foraminifera shells are all used to reconstruct past atmospheric CO_2 levels. *Metasequoia* image courtesy of G. Doria, Yale University; palaeosol image courtesy of G. Bowen, Purdue University.

seawater boron isotopes and alkalinity⁵. Meanwhile, Bayesian approaches for calibrating stomatal reconstructions have mostly revised the resultant CO₂ estimates upwards¹¹, and quantification of cell-size effects on phytoplankton carbon isotope fractionation has increased the consistency of this method¹².

The consensus emerging for Earth's Cenozoic CO_2 history by proxy is promising, but a twofold variation in estimates derived from the different techniques remains. It raises legitimate concerns over the credibility of the estimates of ancient atmospheric CO_2 concentrations. Given what is at stake — understanding the climatic future of our planet as we fail to halt anthropogenic CO_2 emissions — we argue that it is important to identify pathways to greater credibility.

Scientific communities engaged in modelling past, present and future changes in the oceanic and land surface carbon sinks¹³ organized to provide extensive intermodel comparisons and benchmarking against observational datasets and other evidence. Similar activities could also build greater confidence and credibility in the science of CO₂ proxy reconstruction. We therefore propose a two-step process for achieving this.

First, we suggest that proxy reconstructions of past atmospheric CO_2 concentrations should be targeted to the past 800,000 yr, to compare the

estimates with instrumental and CO₂ records obtained from bubbles trapped in ice cores¹⁴. Verification activities should also be linked to the development of standardized Bayesian probabilistic techniques^{6,11,15} for handling the propagation of uncertainties generated by analytical and calibration procedures. Second, we propose focusing on obtaining CO₂ records from numerous proxies for two relatively recent globally warm climate intervals: the middle of the Pliocene epoch (3.6–2.6 Myr ago) and the Mid-Miocene climatic optimum (18-15 Myr ago). Both intervals are characterized by a rich record of palaeoclimate evidence documenting the thermal state of the planet, and the availability of detailed terrestrial and marine fossil depositories for breathalysing Earth's ancient atmospheric CO₂ concentration.

Early results provide increasing confidence in atmospheric CO_2 reconstructions. Four proxies — boron isotopes¹⁶ and B/Ca ratios¹⁷ in carbonate shells, fossil leaf stomata¹⁸ and the isotopic signature of compounds produced by phytoplankton¹⁹ — seem sensitive to glacial–interglacial CO_2 changes, although the B/Ca method is not yet calibrated with laboratory culture experiments. Furthermore, concurrent estimates of Pliocene CO_2 levels by numerous methods agree well, with a difference of only about 50 ppm²⁰. We recognize that it will not be easy to constrain Earth's CO_2 history by proxy, but it is crucial to continue to reduce uncertainties. Apart from climate model simulations, a clear understanding of Earth's CO_2 -rich past is our only chance to grasp the consequences of our unabated exponential consumption of fossil fuels.

David J. Beerling^{1*} and Dana L. Royer² are in the ¹Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK and ²Department of Earth and Environmental Sciences and College of the Environment, Wesleyan University, Middletown, Connecticut 06459, USA. *e-mail: d.j.beerling@sheffield.ac.uk

References

- Lacis, A. A., Schmidt, G. A., Rind, D. & Ruedy, R. A. Science 330, 356–359 (2010).
- Raupach, M. R. & Canadell, J. G. Curr. Opin. Environ. Sustain. 2, 210–218 (2010).
- 3. Hansen, J. et al. Open Atmos. Sci. J. 2, 217-231 (2008).
- 4. Edwards, E. J. et al. Science 328, 587-591 (2010).
- Royer, D. L., Berner, R. A. & Beerling, D. J. Earth Sci. Rev. 54, 349–392 (2001).
- Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A. & Beerling, D. J. Nature Geosci. 1, 43–48 (2008).
- Lowenstein, T. K. & Demicco, R. V. Science 313, 1928 (2006).
- IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
- Breecker, D. O., Sharp, Z. D. & McFadden, L. D. *Proc. Natl. Acad. Sci.* **107**, 576–580 (2010).
 Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H. &
- Tossell, J. A. Earth Planet. Sci. Lett. 248, 276–285 (2006).
- Beerling, D. J., Fox, A. & Anderson, C. W. Am. J. Sci. 309, 775–787 (2009).

- Henderiks, J. & Pagani, M. Paleoceanography 22, PA3202 (2007).
- 13. Le Quéré, C. et al. Nature Geosci. 2, 831-836 (2009).
- 14. Luthi, D. et al. Nature 453, 379-382 (2008).
- Freeman, K. & Pagani, M. in A History of Atmospheric CO₂ and its Effects on Plants, Animals, and Ecosystems (eds Ehleringer, J. R., Cerling, T. E. & Dearing, D. M.) 35–61 (Springer, 2005).
- Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Science 324, 1551–1554 (2009).
- Tripati, A. K., Roberts, C. D. & Eagle, R. A. Science 326, 1394–1397 (2009).
- Rundgren, M. & Björck, S. Earth Planet. Sci. Lett. 213, 191–204 (2003).
- 19. Jasper, J. P. & Hayes, J. M. Nature 347, 462-464 (1990).
- 20. Seki, O. et al. Earth Planet. Sci. Lett. 292, 201-211 (2010).

Additional information

Supplementary information accompanies this paper on www.nature.com/naturegeoscience.