

Review of Palaeobotany and Palynology 114 (2001) 1-28

www.elsevier.nl/locate/revpalbo

Stomatal density and stomatal index as indicators of paleoatmospheric CO₂ concentration

D.L. Royer*

Yale University Department of Geology and Geophysics, P.O. Box 208109, New Haven, CT 06520-8109, USA

Received 9 February 2000; received in revised form 24 August 2000; accepted for publication 26 September 2000

Abstract

A growing number of studies use the plant species-specific inverse relationship between atmospheric CO₂ concentration and stomatal density (SD) or stomatal index (SI) as a proxy for paleo-CO₂ levels. A total of 285 previously published SD and 145 SI responses to variable CO₂ concentrations from a pool of 176 C₃ plant species are analyzed here to test the reliability of this method. The percentage of responses inversely responding to CO₂ rises from 40 and 36% (for SD and SI, respectively) in experimental studies to 88 and 94% (for SD and SI, respectively) in fossil studies. The inconsistent experimental responses verify previous concerns involving this method, however the high percentage of fossil responses showing an inverse relationship clearly validates the method when applied over time scales of similar length. Furthermore, for all groups of observations, a positive relationship between CO₂ and SD/SI is found in only $\leq 12\%$ of cases. Thus, CO₂ appears to inversely affect stomatal initiation, although the mechanism may involve genetic adaptation and therefore is often not clearly expressed under short CO₂ exposure times.

Experimental responses of SD and SI based on open-top chambers (OTCs) inversely relate to CO_2 less often than greenhousebased responses (P < 0.01 for both SD and SI), and should be avoided when experimental responses are required for CO_2 reconstructions. In the combined data set, hypostomatous species follow the inverse relationship more often than amphistomatous species (56 vs. 44% for SD; 69 vs. 32% for SI; P < 0.03 for both comparisons). Both the SD and SI of fossil responses are equally likely to inversely relate to CO_2 when exposed to elevated versus subambient CO_2 concentrations (relative to today). This result casts doubt on previous claims that stomata cannot respond to CO_2 concentrations above present-day levels. Although the proportion of SD and SI responses inversely relating to CO_2 are similar, SD is more strongly affected by various environmental stresses, and thus SI-based CO_2 reconstructions are probably more accurate. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: carbon dioxide; stomatal frequency; paleoatmosphere; paleoclimatology; leaf anatomy; cuticles

1. Introduction

The increase in atmospheric CO_2 concentration since industrialization (Friedli et al., 1986; Keeling et al., 1995) and the predicted continued increase into the near future (Houghton et al., 1995) forces the need to understand how the biosphere operates under elevated (relative to pre-industrial) CO_2 levels. The geologic record affords a wealth of such information. Fundamental to the use of the geologic record, however, is a reliable estimate of CO_2 concentration throughout the intervals of interest. The results of a computer-based model for the Phanerozoic (Berner, 1994; see Fig. 1), based on rates of Ca–Mg silicate weathering and burial as carbonates, weathering and

^{*} Fax: +1-203-432-3134.

E-mail address: dana.royer@yale.edu (D.L. Royer).

^{0034-6667/01/}\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0034-6667(00)00074-9

burial of organic carbon, CO2 degassing, vascular land plant evolution, and solar radiation, have gained considerable use (e.g. Retallack, 1997; Kump et al., 1999). Proxy data are still crucial, however, for both testing and refining this model. Currently used proxies include δ^{13} C from pedogenic carbonates (Cerling, 1991, 1992; Mora et al., 1991, 1996; Ekart et al., 1999), δ^{13} C from trace carbonates contained within goethite (Yapp and Poths, 1992, 1996), δ^{13} C from phytoplankton (Freeman and Hayes, 1992; Pagani et al., 1999a,b), and δ^{11} B from planktonic foraminifera (Pearson and Palmer, 1999). To a first approximation, these proxies largely support the model of Berner (1994) (Fig. 1). A discrepancy exists during the late Carboniferous and early Permian between the pedogenic carbonate-derived data of Ekart et al. (1999) and the model of Berner (1994). However, this discrepancy disappears if the δ^{13} C values for marine carbonates of Popp et al. (1986) are used during this time interval instead of those of Veizer et al. (1999) in calculating CO₂ from the data of Ekart et al. (1999) (Berner, R.A., unpublished data; see Fig. 1b).

Another emerging proxy relies on the plant speciesspecific inverse relationship between atmospheric CO_2 concentration and stomatal density and/or stomatal index. Concerns have been raised regarding this method's reliability (Körner, 1988; Poole et al., 1996), and it is the purpose of this paper to address these concerns via an extensive analysis of the literature. Analysis includes stomatal responses from fossil observations as well as short-term (experimental, natural CO_2 springs, altitudinal transects, and herbaria) observations, as responses from the latter category are often used to generate standard curves for estimating CO_2 from fossil observations (van der Burgh et al., 1993; Beerling et al., 1995; Kürschner, 1996; Kürschner et al., 1996; Rundgren and Beerling, 1999; Wagner et al., 1999). Specifically, the utility of stomatal indices will be examined, an approach not analyzed in previous reviews (Beerling and Chaloner, 1992, 1994; Woodward and Kelly, 1995).

2. Mechanism controlling stomatal density

Stomata are pores on leaf surfaces through which plants exchange CO₂, water vapor, and other constituents with the atmosphere. They form early in leaf development, and typically mature by the time the leaf reaches 10-60% of its final leaf size (Tichá, 1982). Thus, the timing for the mechanism(s) of stomatal initiation lies early in leaf ontogeny (Gay and Hurd, 1975; Schoch et al., 1980). Currently, no mechanism or combination of mechanisms adequately explains the expression of stomatal initiation, although genetic work may provide insights in the near future (e.g. Berger and Altmann, 2000). Proposed mechanisms include irradiance (Gay and Hurd, 1975; Schoch et al., 1980), humidity (Salisbury, 1927), and pCO_2 (Woodward, 1986; Beerling and Chaloner, 1992; Woodward and Kelly, 1995; Beerling and Woodward, 1996).

A common theory for why CO_2 should (partially) control stomatal initiation is as follows (e.g. Woodward, 1987). Water vapor and CO_2 constitute the two main fluxes across the leaf epidermis. It is generally advantageous for plants to conserve water loss while maximizing CO_2 uptake, two typically antithetical processes. As CO_2 rises for a given water budget, for example, a plant can 'afford' to reduce its stomatal conductance without suffering a reduction in carbon assimilation rates. Two main pathways driving this response are smaller stomatal pores (Bettarini et al., 1998) and a reduction in stomatal numbers

Fig. 1. Atmospheric CO₂ versus time for the Phanerozoic. $\text{RCO}_2 = \text{ratio}$ of mass of paleo-CO₂ to time-averaged pre-industrial value (230 ppmV, the mean CO₂ over at least the last 400 k.y. (Petit et al., 1999)). The centerline joining filled circles (10 m.y. time steps) represents the best estimate from the model of Berner (1994, 1998). The two straddling lines represent error estimates based on sensitivity analyses. Boxes in (a) represent 91 non-stomatal-based proxy estimates of varying RCO₂ resolution (data from Suchecky et al., 1988; Platt, 1989; Cerling, 1991, 1992; Freeman and Hayes, 1992; Koch et al., 1992; Muchez et al., 1993; Sinha and Stott, 1994; Andrews et al., 1995; Ghosh et al., 1995; Mora et al., 1996; Yapp and Poths, 1996; Ekart et al., 1999; Elick et al., 1999; Lee, 1999; Lee and Hisada, 1999; Pagani et al., 1999a, 1999b; Pearson and Palmer, 1999). The heavy line in (b) is a five-point running average of the mean RCO₂ of every box in (a). This approach smoothes short-term CO₂ fluctuations and is more directly comparable with the model of Berner (1994, 1998). The dashed line in (b) is a five-point running average incorporating a recalculation of Ekart et al. (1999) data during the late Carboniferous and early Permian using the marine carbonate δ^{13} C data of Popp et al. (1986) (see text for details).

(Woodward, 1987). Conversely, a drop in CO_2 requires an increase in stomatal conductance to maintain assimilation rates, but at the cost of increased water loss.

2.1. Stomatal index

Stomatal density (SD) is a function of both the number of stomata plus the size of the epidermal cells. Thus, SD is affected both by the initiation of stomata and the expansion of epidermal cells. This expansion is a function of many variables (e.g. light, temperature, water status, position of leaf on crown, and intra-leaf position), and can overprint the signal reflective of stomatal initiation. As it turns out, CO_2 plays a stronger role in stomatal initiation than in epidermal cell expansion (this is discussed in detail below). Salisbury (1927) introduced the concept of stomatal index (SI), which normalizes for the effects of this expansion (i.e. density of epidermal cells). It is defined as:

$$SI(\%) = \frac{\text{stomatal density}}{\text{stomatal density} + \text{epidermal cell density}} \times 100$$

where stomata consist of the stomatal pore and two flanking guard cells.

2.2. C_4 plants

The fundamental photosynthetic differences between C_3 and C_4 plants have consequences for stomatal-based CO₂ reconstructions. Carbon in C₃ plants is fixed within the spongy and palisade mesophyll where CO_2 concentrations (c_i) are approximately 70% of the atmospheric value. As atmospheric CO₂ fluctuates, so too does c_i to maintain this ~ 0.7 ratio (Polley et al., 1993; Ehleringer and Cerling, 1995; Beerling, 1996; Bettarini et al., 1997). Thus the stomatal pore area is sensitive to changing atmospheric CO₂ levels. C₄ plants, in contrast, fix carbon within their bundle sheath cells. The endodermis enclosing these bundle sheath cells is highly impervious to CO₂, and consequently CO₂ concentrations within these cells can reach 1000-2000 ppmV (Lambers et al., 1998). One would therefore anticipate, based on the proposed mechanism between CO₂ and stomatal initiation discussed above, that even moderate changes in atmospheric CO₂ have little influence on stomatal pore area and, by extension, SD and SI (Raven and Ramsden, 1988). Of the nine responses derived from C₄ plants documented here, only one inversely responds to CO₂ (see Appendix A1). This marked insensitivity in C₄ plants lends indirect support for the proposed mechanism. Because of the above physiological reasons, none of the analyses considered here include responses from C₄ plants.

3. Stomatal density and stomatal index as CO₂ indicators

A database consisting of 285 SD responses and 145 SI responses to variable CO_2 concentrations was compiled to elucidate salient patterns (Appendices A1–3). 176 species are represented. This database is an expansion of previous reviews (Beerling and Chaloner, 1994; Woodward and Kelly, 1995) and includes, for the first time, stomatal indices.

Each response was first placed in one of three categories: experimental, subfossil, and fossil. Experimental responses stem from experimentally controlled CO₂ environments, typically in greenhouses, which last from 14 days to five years in length. For studies that measured SD and/or SI at several different times and/or CO₂ levels, typically only the response corresponding to the longest exposure time and highest CO₂ level was used. Most subfossil responses stem from dated herbarium specimens (from the last 240 years), where corresponding CO_2 concentrations are known from ice core data (Neftel et al., 1985; Friedli et al., 1986). Data from altitudinal transects and natural CO₂ springs are also placed in the subfossil category, as this category represents the closest match in terms of CO₂ exposure time. Finally, fossil responses consist of well-dated fossil material. Methods for obtaining reference CO₂ concentrations for the fossil responses are discussed below.

Each response was assigned as either increasing (P < 0.05), decreasing (P < 0.05), or remaining the same (P > 0.05) relative to controls. Where *P*-values were not reported, a test for overlapping standard deviations was used, which typically yields a conservative estimate for statistical significance (relative to the $\alpha = 0.05$ level).

Table 1	
Statistical summary of stomatal re	sponses to changing CO ₂ concentrations

	Expe	Experimental				Subfossil		Fossil			Combined					
	SD ^a	SD ^a		SI ^b		SD S		SI		SD			SD		SI	
	% ^c	(<i>n</i>)	%	(<i>n</i>)	%	(<i>n</i>)	%	(<i>n</i>)	%	(<i>n</i>)	%	(<i>n</i>)	%	<i>(n)</i>	%	(<i>n</i>)
Total	40	(127)	36	(74)	50	(133)	34	(35)	88	(25)	94	(36)	49	(285)	50	(145)
Elevated CO ₂ ^d	39	(109)	29	(65)	_	_	_	_	100	(13)	96	(24)	45	(232)	41	(116)
Subambient CO ₂	50	(18)	89	(9)	_	_	_	_	89	(9)	89	(9)	75	(40)	88	(25)
Opposite response ^e	9	(127)	4	(74)	11	(133)	9	(35)	12	(25)	3	(36)	11	(285)	5	(145)
Hypostomatous ^f	59	(27)	65	(17)	50	(80)	38	(24)	_	_	-	_	56	(121)	69	(70)
Amphistomatous ^g	36	(90)	27	(55)	49	(49)	25	(8)	-	-	_	-	44	(149)	32	(71)
Abaxial	40	(45)	24	(29)	41	(22)	_	_	_	_	_	_	41	(68)	21	(33)
Adaxial	29	(42)	31	(26)	55	(22)	_	-	-	-	_	-	38	(65)	33	(30)
Experiments using OTCsh	13	(31)	13	(24)	-	-	_	-	-	-	_	-	-	-	_	-
Experiments using greenhouses	48	(95)	48	(50)	_	_	_	_	_	_	_	_	_	_	_	_
Herbarium studies only	_j	-	_	-	57	(93)	89	(9)	-	-	_	-	-	-	_	-
Repeated species ⁱ	-	-	-	-	-	-	-	-	-	-	-	-	57	(28)	55	(11)

^a Stomatal density.

^b Stomatal index.

^c Percentage of responses inversely correlating with CO₂.

^d CO₂ concentrations are higher than controls.

^e Percentage of responses positively correlating with CO₂.

^f Leaves with stomata only on abaxial (lower) side.

^g Leaves with stomata on both surfaces.

^h OTC = open-top chamber; typically cone-shaped with an open top.

ⁱ For species with multiple responses with ≥ 1 inversely correlating with CO₂, percentage that consistently inversely correlate.

^j Not applicable or sample size too small for meaningful comparison.

3.1. Experimental responses

127 SD and 74 SI responses from a pool of 68 species are represented here. For SD, 40% of the experimental responses inversely respond (at the $\alpha = 0.05$ level) to CO₂; the proportion for stomatal indices is similar (36%) (Table 1).

Plants exposed to subambient CO_2 are more likely to inversely respond than plants exposed to elevated CO_2 for both SD (50 vs. 39%; P = 0.36) and SI (89 vs. 29%; P < 0.001). These results support previous claims that plants more strongly express the CO_2 -SD/SI inverse relationship when exposed to subambient versus elevated CO_2 concentrations (Woodward, 1987; Woodward and Bazzaz, 1988; Beerling and Chaloner, 1993a; Kürschner et al., 1997). A common explanation for this CO_2 'ceiling' phenomenon is that plants today have not experienced elevated CO_2 levels (350 + ppmV) for at least the entire Quaternary and possibly longer (Pagani et al., 1999a; Pearson and Palmer, 1999). Thus, for short time scales where only plant plasticity is tested, plants respond more favorably to CO_2 conditions which they most recently experienced, namely subambient concentrations (Woodward, 1988; Beerling and Chaloner, 1993a). The implication for stomatal-based CO_2 reconstructions is that experimental evidence based on elevated CO_2 treatments may not reflect the reliability of the method. Over 85% of the experimental responses analyzed here stem from elevated CO_2 treatments. Another related concern raised with experimental results is that CO_2 is shifted in one step in contrast to the smoother, longer-term trend in nature (Beerling and Chaloner, 1992; Kürschner et al., 1997).

An alternative explanation for the CO_2 ceiling is that while CO_2 is limiting for photosynthesis at CO_2 concentrations below present-day levels, it is not limiting at elevated levels. Therefore, for example, if CO_2 decreases in a subambient CO_2 regime (where CO₂ is limiting for photosynthesis), a mechanism exists to increase stomatal pore area and, by extension, CO₂ uptake. The same may not be true at elevated CO₂ concentrations if CO₂ is not limiting for photosynthesis under such conditions (Wagner et al., 1996; Kürschner et al., 1998). Empirical data do not strongly support this alternative hypothesis. While assimilation rates generally decrease at subambient CO₂ levels (Polley et al., 1992; Robinson, 1994), they also typically increase in response to CO₂ concentrations of at least 700 ppmV (Long et al., 1996; Curtis and Wang, 1998). CO₂ therefore usually continues to limit photosynthesis in most plants above present-day CO₂ levels, even if the effects of this excess CO2 are partially mediated by a reduction in photorespiration and enhancement in RuBP regeneration (the primary substrate used to fixed CO₂ in C₃ plants), and so only affect photosynthesis indirectly. Therefore, there is no reason to expect a CO₂ ceiling coincident with current CO_2 levels. It is likely, however, that the rate of change in assimilation rates is reduced at elevated CO₂ concentrations (Farquhar et al., 1980), which could reduce the sensitivity of SD and SI responses under such conditions.

Experimental manipulations are usually conducted in either enclosed greenhouses or open-top chambers (OTCs). Most OTCs have less control over humidity and temperature. Significant 'chamber effects' have been detected for stomatal parameters (Knapp et al., 1994; Apple et al., 2000), and results generated here support such claims. Plants in OTCs inversely respond to CO_2 in far fewer cases than greenhouse grown plants for both SD (13 vs. 48%; P < 0.001) and SI (13 vs. 48%; P < 0.01). Thus, it appears OTCs introduce confounding factors and should be avoided in SD/SI work.

Although the proportion of experimental responses inversely responding to CO_2 may appear low (40 and 36% for SD and SI, respectively), in part from the factors discussed above, it is important to note that the percentage of responses showing a positive relationship (P < 0.05) is very low (9 and 4% for SD and SI, respectively). Thus, the vast majority of plants either respond inversely to experimental exposure to CO_2 or do not respond at all.

3.2. Subfossil responses

133 SD and 35 SI responses from a pool of 95 species are represented here. For SD, 50% of the subfossil responses inversely relate (at the $\alpha = 0.05$ level) to CO₂. Thus, subfossil responses, which are based on longer exposure times, more often inversely relate to CO₂ than do experimental responses (50% vs. 40%; P = 0.11). For SI, only 34% of the responses show a significant inverse relationship, however the sample size is disproportionally small (n = 35) (Table 1).

As outlined above, three types of studies comprise the subfossil responses: altitudinal transects, natural CO₂ springs, and herbaria. If only herbarium responses are analyzed (n = 93 and n = 9 for SD and SI, respectively), the proportion showing an inverse response to CO₂ improves to 57 and 89%, respectively. Responses from altitudinal transects and natural CO₂ springs may therefore be of less value for paleo-CO₂ reconstructions. This dichotomy in response fidelity may be an expression of the CO_2 ceiling phenomenon discussed above. As CO₂ levels rose to current levels over the last 240 + years, the majority of plants (57 and 89% for SD and SI, respectively) responded with significant decreases in SD and/or SI. At higher CO₂ levels, however, as expressed near natural CO₂ springs, a smaller proportion of plants responded with lower SD (30%; n = 30) and/or SI (16%; n = 25). If, on the other hand, current CO₂ concentrations do *not* represent a true genetic ceiling for plants, than these data show that the majority of plants cannot adapt to CO₂ levels above today's within the special residence time near natural CO₂ springs $(10^2 - 10^3 \text{ years?})$.

In accordance with the experimental responses, a very small proportion of the subfossil observations positively respond to CO_2 (11 and 9% for SD and SI, respectively). Most plants either inversely respond to CO_2 or do not respond at all. If CO_2 exerts any influence on stomatal initiation, it must be of an inverse behavior.

3.3. Fossil responses

25 SD and 36 SI responses from a pool of 28 species are represented here. For SD, 88% of the observations show an inverse relationship (at the α =

Fig. 2. The percentage of responses for (a) SD and (b) SI that inversely relate to CO_2 ('inverse'), show no significant change to CO_2 ('insensitive'), or respond positively to CO_2 ('positive') in each of three categories. Note that only herbarium responses compose the subfossil category.

0.05 level) to CO_2 ; for SI, the proportion is 94% (Table 1). Only 12 and 3% of the observations positively respond to CO_2 for SD and SI, respectively. Thus, the robustness of the SD/SI method improves with increased CO_2 exposure time (Fig. 2), supporting earlier hypotheses (Beerling and Chaloner, 1992, 1993a).

Qualitatively, the transition between dominance of stomatal response by plasticity within a given gene pool and genetic adaptation appears to occur for most plants between 10^2 and 10^3 years (i.e. intermediate between CO₂ exposure times typical for subfossil and fossil responses). This conclusion hinges on the assumption that CO₂ exerts a consistent genetic pressure on stomatal initiation, and given sufficient exposure time will overprint the smaller scale plastic responses (including changes in individual stomatal pore size). The fact that the increase in responses

showing an inverse relationship to CO_2 as a function of exposure time comes at the expense of insensitive responses (Fig. 2) supports this assumption. 10^2 to 10^3 years is slightly longer than previous estimates (Beerling and Chaloner, 1993a), and should give rise to some caution in using experimental and subfossil responses in paleo-CO₂ reconstructions (i.e. comparing responses due mainly to plasticity versus genetic adaptation).

The fossil data cast doubt on the notion that stomata cannot respond to CO₂ concentrations above presentday levels. The proportion of fossil responses showing an inverse relationship based on subambient CO₂ exposure are nearly equal to those fossil observations based on elevated CO₂ exposure for both SD (89 and 100%, respectively) and SI (89 and 96%, respectively), although sample sizes are fairly small (Table 1). Some groups of plants respond to CO₂ levels of at least 2700 ppmV (McElwain and Chaloner, 1995; Appendix C). This result does not discount, however, that stomatal parameters may be less sensitive at elevated than at subambient (relative to today) CO_2 levels. The CO_2 ceiling observed in experimental responses therefore appear to stem from the short-term inability of plants to respond to elevated CO₂, not a long-term genetic limit. Interestingly, Woodward (1988) noted that plants with short generation times (e.g. annuals) are often capable of decreasing their stomatal densities when experimentally exposed to elevated CO₂ levels (for ≥ 1 year), probably because of their quicker genetic adaptation rates (Woodward, 1988). This suggests that the exposure time required to mitigate the CO_2 ceiling may not be much beyond typical experimental exposure times, and in fact may not exist at all for some plants.

Caution is urged with regard to several features concerning the fossil responses. First, in several studies stomatal comparisons between fossil and modern plants were made with two separate but ecologically equivalent sets of species (McElwain and Chaloner, 1995, 1996; McElwain, 1998; McElwain et al., 1999). In addition to the long-term influence of CO₂ on SD and SI for a given species, it has also been shown, for example, that high CO₂ selects for groups of plants with lower mean stomatal densities/ indices (Beerling, 1996; Beerling and Woodward, 1997) (Fig. 3). Thus, it is not particularly surprising that stomatal densities and indices from times of high

Fig. 3. SD versus time for the Phanerozoic. Redrawn from Beerling and Woodward (1997), with additional data plotted from McElwain and Chaloner (1996), Edwards et al. (1998), McElwain (1998), Cleal et al. (1999) and McElwain et al. (1999). Regression is a third order polynomial ($r^2 = 0.57$; n = 132). Compare trend with Fig. 1.

 CO_2 are lower than for ecologically equivalent modern species. Ideally, these two effects should be kept separate.

Second, estimates of CO_2 for the fossil responses are invariably not as accurate as those estimates for experimental and subfossil responses. Ice core derived data are used for the last 150 k.y., and the model of Berner (1994) or other proxy data are most often used for pre-ice core responses. In particular, estimates from Berner's curve are highly approximate due to its sizable error envelope and coarse 10 m.y. time resolution (see Fig. 1); brief but large CO₂ excursions discernable with the various proxy methods are probably too temporally constrained to influence Berner's model (Montañez et al., 1999). In cases where experimental and subfossil responses are used to generate a standard curve upon which CO₂ concentrations are directly calculated from fossil responses, ice core data (Beerling et al., 1995; Wagner et al., 1999; Rundgren and Beerling, 1999) or the presence of temperature excursions (van der Burgh et al., 1993; Kürschner, 1996; Kürschner et al., 1996) are used to corroborate the stomatal-based estimates.

3.4. Combined data set

Based on the combination of the above three categories, both SD and SI inversely correlate with CO₂ ca. 50% of the time (n = 285 and 145, respectively) (Table 1). Very rarely do the responses positively correlate with CO₂ (11 and 5% for SD and SI, respectively). For species that have been analyzed repeatedly by different researchers, those that inversely respond to CO₂ tend always to respond in such a way (57% (n = 28) and 55% (n = 11) for SD and SI, respectively). Woodward and Kelly (1995) reported a similar behavior, where 76% of their sensitive species consistently responded.

Thus, although response times differ (see above and Fig. 2), CO₂ is highly negatively correlated with stomatal initiation. A scatterplot of all data shows an overall inverse relationship between SD/SI and CO₂ (Fig. 4a). Although the overall regression is not robust ($r^2 = 0.26$; n = 420), this principally stems from equivocal experimental and natural CO₂ spring data. The fossil data, when regressed independently, yield an r^2 of 0.68 (n = 59) (Fig. 4b). Given the species-specific and

Fig. 4. (a) Scatterplot of all data ($r^2 = 0.26$; n = 420) showing the cube root transform of percentage change in SD and SI in response to percentage change in atmospheric CO₂ concentration. Responses in quadrants II and IV inversely relate to CO₂ while responses in quadrants I and III positively relate. (b) Similar scatterplot for fossil data only. Regression equation of untransformed data: $y = 112.43 \exp(-0.0026x) - 100$. ($r^2 = 0.68$; n = 59).

probable multi-mechanistic nature of the relationship, this regression is surprisingly robust.

Curiously, based solely on the combined results, it appears SD is equally reliable as SI as a CO_2 indicator (Table 1). The implications are tempting, as epidermal cells are often difficult to resolve in fossil material (Beerling et al., 1991; McElwain and Chaloner, 1996). This issue is discussed in the section below.

Most vascular land plants have stomata on either both surfaces (amphistomatous) or only the abaxial (lower) surface (hypostomatous). Woodward and Kelly (1995) reported no strong differences in responses between the two leaf types, although in experimental responses amphistomatous species appeared more likely to inversely relate to CO₂. Results here indicate hypostomatous species more often inversely respond to CO₂ for both SD (56 vs. 44%; P < 0.03) and SI (69 vs. 32%; P < 0.001). For amphistomatous species, neither the abaxial nor adaxial (upper) surface yield statistically different responses (Table 1).

4. Potential confounding factors

 CO_2 is likely not the sole factor determining stomatal density and stomatal index. As discussed above, SD is sensitive to both stomatal initiation and epidermal cell expansion, while SI is sensitive only to stomatal initiation. The influence of natural variability, water stress, irradiance, temperature and other factors on stomatal parameters are briefly discussed below. More thorough reviews are given by Salisbury (1927), Tichá (1982) and Woodward and Kelly (1995).

4.1. Natural variability

In general, stomatal density increases from leaf base to tip (Salisbury, 1927; Sharma and Dunn, 1968, 1969; Tichá, 1982; Smith et al., 1989; Ferris et al., 1996; Zacchini et al., 1997; Stancato et al., 1999). SD also often increases from leaf midrib to margin (Salisbury, 1927; Sharma and Dunn, 1968; Smith et al., 1989), although sometimes the differences are not significant (Sharma and Dunn, 1969; Tichá 1982). In contrast, very little intra-leaf variation in SI is present (Salisbury, 1927; Rowson, 1946; Sharma and Dunn, 1968, 1969; Rahim and Fordham, 1991), although Poole et al. (1996) found significant intra-leaf variation in *Alnus glutinosa*. For amphistomatous species, the distribution of stomata are generally more uniform on the abaxial surface (Rowson, 1946; Sharma and Dunn, 1968, 1969), and so for all species typically the mid-lamina of the abaxial surface yields the least variation.

Stomatal density also increases from the basal to distal regions of the plant (Salisbury, 1927; Gay and Hurd, 1975; Tichá, 1982; Oberbauer and Strain, 1986; Zacchini et al., 1997), primarily as a consequence of decreased water potential. Decreased water potential stimulates xerophytic traits, which include smaller epidermal cells, which in turn promote closer packing of stomata, and thus increased SD. Little effect is reported for SI (Rowson, 1946), although evergreen species may exhibit a significant gradient (Kürschner, W.M., personal communication, 2000). Conflated with this trend are the differences between sun and shade leaves. Again, SD is consistently higher in sun leaves while SI values remain conservative (Salisbury, 1927; Poole et al., 1996; Kürschner, 1997; Wagner, 1998) with the exception of the study of Poole et al. (1996), who found a small 7% decline in SI for shade versus sun leaves. For fossil studies, since sun leaves in allochthonous assemblages are preferentially preserved (Spicer, 1981), this issue is often not a concern even for SDbased work. For example, Kürschner (1997) observed that 90% of his Miocene Quercus pseudocastanea leaves were sun morphotypes.

4.2. Water stress

In general, water stress correlates with increased SD (Salisbury, 1927; Sharma and Dunn, 1968, 1969; Tichá, 1982; Abrams, 1994; Estiarte et al., 1994;

Fig. 5. (a) CO_2 relative to ambient concentrations for four heights within a tree canopy in 1996. Canopy height is ca. 24 m. Ordinate represents seven day running average of daily averages of hourly measurements at each height (n = 5311 for each height). Measurements at 29.0 m height taken as ambient value (mean for time interval at this height = 370 ppmV). (b) Diurnal trend of CO_2 relative to ambient concentrations (data from 9 April–13 July 1996). Ordinate represents mean for each hour at each height (n = 1388 for each height). Standard errors approximate size of symbols. Raw data used with permission of S. Wofsy.

Clifford et al., 1995; Heckenberger et al., 1998; Pääkkönen et al., 1998). Some studies, however, report no response (Estiarte et al., 1994; Dixon et al., 1995; Pritchard et al., 1998; Centritto et al., 1999). No studies report a decrease. SI consistently appears insensitive to water stress (Salisbury, 1927; Sharma and Dunn, 1968, 1969; Estiarte et al., 1994; Clifford et al., 1995).

Salisbury (1927) proposed humidity as a mechanism for controlling stomatal initiation, and thus SI. Increased humidity slightly increased SI (P > 0.05) for *Scilla nutans*, however, Tichá (1982) concluded that humidity may actually reduce stomatal index. Sharma and Dunn (1968, 1969) found no effect. Thus, the current data are equivocal.

4.3. Irradiance

Not surprisingly, light intensity usually positively correlates with SD (Sharma and Dunn, 1968, 1969; Gay and Hurd, 1975; Tichá, 1982; Oberbauer and Strain, 1986; Solárová and Pospíšilová, 1988; Stewart and Hoddinott, 1993; Ashton and Berlyn, 1994; Furukawa, 1997; Zacchini et al., 1997). This response is driven (partially) by enhanced water stress. Light intensity may also positively affect SI (Sharma and Dunn, 1968, 1969; Furukawa, 1997), although some report no response (Salisbury, 1927; Sharma and Dunn, 1968, 1969) and Rahim and Fordham (1991) observed a small decrease with increasing irradiance. In the case of Sharma and Dunn (1968, 1969), they speculated that the low irradiance levels required to depress SI could not sustain plants in a competitive environment.

In experimental manipulations, photoperiod strongly affects both SD and SI (Schoch et al., 1980; Zacchini et al., 1997). Schoch et al. (1980) observed that even one day of low irradiance levels during the critical period of stomatal initiation could affect SD and SI. Given that SI is typically conservative in deciduous species within a given crown, it is possible the effects of photoperiod on SI observed in experiments are minimal in nature.

4.4. Temperature

Temperature appears positively correlated with SD (Ferris et al., 1996; Reddy et al., 1998; Wagner, 1998; but see Apple et al., 2000), a likely consequence of

enhanced water stress. Temperature may also affect SI (Ferris et al., 1996; Wagner, 1998), suggesting an influence on stomatal initiation. Reddy et al. (1998), however, found no response. The influence of temperature on stomatal initiation may be inconsequential, though, as most plants partially normalize for fluctuating temperatures by adjusting the timing of leaf development, and so the temperature at which stomata form remains fairly constant (Wagner, 1998).

4.5. Canopy CO₂ gradient

If CO₂ concentrations within canopies deviate significantly from ambient concentrations, CO₂ estimates based on stomatal parameters could be skewed. Empirical evidence, however, does not suggest such large deviations. Hourly measurements of CO₂ at eight different heights (0.3, 0.8, 4.5, 7.5, 12.7, 18.3, 24.1 and 29.0 m above the ground surface) have been recorded for several consecutive years from an atmospheric tower in the Harvard Forest (data available at http://www-as.harvard.edu/chemistry/hf/profile/profile.html). This forest, in north central Massachusetts, USA, consists of mixed hardwoods and conifers. As shown in Fig. 5a, above 4.5 m, where the bulk of leaves from mature trees form, canopy CO₂ levels are virtually indistinguishable from ambient levels. Furthermore, all deviations diminish during the middle of the day (Fig. 5b), a period when cell respiration and division is highest. Thus, CO₂ gradients within canopies are likely not strong enough to influence stomatal initiation rates.

4.6. Paleotaxonomy

Paleobotanical species identification via morphological comparison with modern representatives is often tenuous, particularly with pre-Neogene material. There are methods, however, to bolster confidence in such morphologically based species identification. These include comparing the sedimentological and ecological contexts with the proposed extant representative. For example, if a strictly swamp margin fossil species is morphologically identical to a modern representative that is also restricted to swamp margins, then one can be more confident that the two are identical species. Independent of species identification, however, it is also possible that a single species may develop, for example, different stomatal behaviors through time. This, in turn, could affect paleo- CO_2 reconstructions. One way to circumvent this problem is through the study of the species' closest extant sister group (e.g. de Queiroz and Gauthier, 1990). If the stomata in both extant species show a similar response to CO_2 , then it can be assumed that this stomatal behavior in both species is conservative in time back to at least when the species branched.

4.7. Other potential confounding factors

Through the comparison of 100 species, neither growth form (woodiness vs. non-woodiness; trees vs. shrubs), habitat (cool vs. warm), nor taxonomic relatedness strongly correlated with SD (Woodward and Kelly, 1995). Habitat has also been found not to affect SI (Rowson, 1946). Analysis of the data set presented here shows that for genera represented by >1 species, only 19% (n = 16) and 14% (n = 7) of these genera respond in a consistent fashion to CO₂ (i.e. positive, negative, or insensitive) for SD and SI, respectively. These results provide further support for the taxonomic independence of stomatal responses to CO₂.

An increase in ploidy level is associated with lower SD (Rowson, 1946; Mishra, 1997). No clear trend is found in SI (based on two studies), with Rowson (1946) reporting a decrease and Mishra (1997) no change. Given the widespread variability of ploidy levels in the fossil record (Masterson, 1994), this may have important consequences for stomatal-based CO_2 reconstructions.

Elevated levels of ozone increase SD in *Betula* pendula (Frey et al., 1996; Pääkkönen et al., 1998), *Fraxinus excelsior* (Wiltshire et al., 1996) and *Olea* europaea (Minnocci et al., 1999). Effects on SI were not reported.

Although largely untested, atmospheric oxygen may influence SD and SI. Elevated O_2/CO_2 ratios increase photorespiration in C_3 plants, suppressing CO_2 assimilation rates. One pathway to mediate this decline is increasing SD and/or SI. Experimental work on *Hedera helix* and *Betula pubescens* show slightly higher stomatal indices in a 35% versus 21% O_2 atmosphere (Beerling et al., 1998b). If correct, this factor may be particularly important during the Carboniferous and early Permian when O_2 concentrations are

modeled to exceed 30% (Berner and Canfield, 1989; Berner et al., 2000).

5. Summary

Based on the data presented here, nearly all species appear responsive on the time scales inherent in most fossil CO₂ reconstructions (>10² years) (Fig. 2; Table 1). Only 40–50% of species are responsive over the time scales of experimental and subfossil studies ($\sim 10^{-2}-10^2$ years), and so those conducting studies requiring such responses must take care in choosing sensitive species (Appendices A and B). Another potential weakness in utilizing experimental and subfossil responses is that they are more reflective of plasticity within given gene pools, and may display different behaviors than their respective fossil responses (which are more reflective of genetic adaptation).

SD and SI are both equally likely to inversely relate to CO_2 . SD, however, is sensitive to factors affecting cell expansion such as water stress, temperature, and irradiation. SI, in contrast, is sensitive only to factors affecting cell initiation, of which CO_2 appears to be one factor. Thus, even if SD and SI show similar responses for a given species (e.g. both positive or negative), SI should yield more accurate CO_2 estimates.

5.1. Applications of method

Although experimental work has been carried out for many years, Woodward (1987) was the first to document the inverse CO_2 –SD/SI relationship over longer time scales (200 years). Beerling et al. (1991, 1993) extended the applicability of the method to 140 k.y. with *Salix herbacea*, where stomatal densities showed a general inverse relationship with ice core reconstructed CO_2 concentrations. This method has also proven successful with 9.2 ka *Salix cinerea* (McElwain et al., 1995), 13 ka *Betula nana* (Beerling, 1993), and 28 ka *Pinus flexilis* (van de Water et al., 1994).

While the above studies validate the relationship over time scales useful for fossil studies, they do not generate independent estimates of paleo-CO₂. For this, fossil responses must be fitted to a standard curve based on experimental, subfossil, and fossil

Fig. 6. Estimates of CO₂ for the Devonian, Carboniferous–Permian, Triassic, Jurassic, and Eocene (unmarked boxes) calculated from the stomatal ratio technique of McElwain and Chaloner (1995) superimposed over the CO₂ curve and corresponding error envelope of Berner (1994, 1998). Stomatal ratio scale calibrated to RCO₂ scale using a 1:1 correspondence; this is the 'Recent standard' of McElwain (1998). RCO₂ and stomatal ratio defined in Fig. 1 and text, respectively. Data from McElwain (1998) and McElwain et al. (1999). Estimates of CO₂ for the Miocene ("v") calculated from a herbaria-based training set. Data from van der Burgh et al. (1993) and Kürschner et al. (1996).

responses (from the last 400 k.y., for which ice core data exist; e.g. Petit et al., 1999) of the same species. This approach has been successful in the Holocene with Salix herbacea (Beerling and Chaloner, 1993a; Beerling et al., 1995; Rundgren and Beerling, 1999) and Betula pubescens and B. pendula (Wagner et al., 1999), and in the Miocene with Quercus petraea and Betula subpubescens (van der Burgh et al., 1993; Kürschner, 1996; Kürschner et al., 1996). While this approach produces the most accurate CO₂ reconstructions, it is limited by its requirement to compare identical species (or highly similar species within a genus; Wagner et al., 1999). There are, however, single species spanning most or all of the late Cretaceous and Tertiary (e.g. Ginkgo adiantoides/biloba, several members of Taxodiaceae), and so CO₂ estimates for this interval are possible.

One clear advantage of the stomatal method over

other proxies and models is its high temporal resolution. The temporal resolution of late Quaternary fossil material often exceeds that of ice cores (Beerling et al., 1995; Wagner et al., 1999), and similar high resolution data have been used to document CO_2 excursions across the Allerød/Younger Dryas (Beerling et al., 1995) and Triassic/Jurassic (McElwain et al., 1999) boundaries. Another advantage over other proxies and models is its higher level of precision (compare Fig. 1a with Fig. 6).

Estimating pre-Cretaceous CO_2 levels proves more difficult. McElwain and Chaloner (1995) developed a technique comparing responses of fossil species to those of their Nearest Living Equivalents (NLEs). NLEs are defined ecologically, not taxonomically, and represent the ecologically closest living analog to the fossil species. SI ratios of the fossils:NLEs were calculated, and in order to estimate CO_2 the Carboniferous:NLE stomatal ratio was normalized to the Phanerozoic CO_2 curve of Berner (1994), with the remainder of the ratios scaled accordingly in a linear fashion. Given that this method assumes a linear response and is not a true independent CO₂ indicator, reconstructed CO₂ concentrations from the Devonian, Carboniferous, Permian, and Jurassic all matched Berner's values remarkably well (McElwain and Chaloner, 1995, 1996). Later (McElwain, 1998), in order to reduce the method's dependence on Berner (1994), data (including new material from the Eocene) were plotted assuming a 1:1 correspondence between stomatal ratios and RCO_2 ($RCO_2 = ratio$ of mass of paleo-CO₂ to pre-industrial value; see Fig. 1). Using this more independent technique, all but the Devonian material agreed well with the estimates of Berner (1994). Recent changes in Berner's model, however, have pushed back the sharp drop in Paleozoic CO₂ ~40 m.y. (Berner, 1998), resulting in closer agreement between the two methods for the Devonian (Fig. 6).

There is growing interest in quantifying Tertiary CO_2 concentrations (Cerling et al., 1997; Pagani et

Appendix A1

Experimental stomatal responses

al., 1999a, 1999b; Pearson and Palmer, 1999), primarily fueled by the question of whether CO_2 and temperature are coupled during this interval. Estimates from stomatal indices have the potential to help resolve this question. As for pre-Cretaceous estimates, the less quantitative stomatal ratio method of McElwain and Chaloner (1995) remains the best option.

Acknowledgements

I thank W.M. Kürschner, W.G. Chaloner, D.J. Beerling, L.J. Hickey, J. Carroll, and J.C. McElwain for constructive comments on the manuscript. I thank R.A. Berner for constructive comments and help in drafting Figs. 1 and 6. I also thank L.M. Huggins for providing an age for his Miocene material. I am grateful to S. Wofsy, B. Munger, M. Goulden, and C. Barford for providing canopy CO₂ data from Harvard Forest. This work was funded by DOE grant DE-FGO₂-95ER14522, a NSF Graduate Research Fellowship, and a Yale University Fellowship.

Experiment length (days)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
?	↑ 300%	Phaseolus vulgaris	abaxial	*↓9%	_	O'Leary and Knecht, 1981 ^b
			adaxial	\leftrightarrow		
14	↑ 2067%	Marsilea vestita	abaxial	*↓91%	_	Bristow and Looi, 1968 ^b
			adaxial	\leftrightarrow	_	
	$\uparrow \sim 10^5\%$	Marsilea vestita	abaxial	*↓99%	_	
			adaxial	\leftrightarrow		
15	↑ 100%	Populus euroamericana	-	↑ 38%	\leftrightarrow	Gaudillère and Mousseau, 1989 ^b
20	↑ 80%	Phaseolus vulgaris	abaxial	\leftrightarrow	\leftrightarrow	Ranasinghe and Taylor, 1996 ^b
		-	adaxial	\leftrightarrow	\leftrightarrow	
21	↑ 86%	Tradescantia (fluminensis?)	abaxial	\leftrightarrow	\leftrightarrow	Boetsch et al., 1996 ^b
21	↓ 29%	Vaccinium myrtillus	abaxial	\leftrightarrow	\leftrightarrow	Woodward, 1986 ^b
			adaxial	* † 548%	* † 424%	
	† 29%	Vaccinium myrtillus	abaxial	\leftrightarrow	\leftrightarrow	
			adaxial	\leftrightarrow	\leftrightarrow	
21	↓ 34%	Acer pseudoplatanus	abaxial	* † 220%	* † 122%	Woodward and Bazzaz, 1988 ^b
		Geum urbanum	abaxial	* † 31%	* † 18%	
			adaxial	* † 214%	* † 191%	
		Quercus robur	abaxial	* † 131%	* † 81%	
		Rhamnus catharticus	abaxial	* † 117%	* ↑ 100%	
		Rumex crispus	abaxial	* † 71%	* † 31%	
		-	adaxial	* 150%	* ↑ 400%	

Appendix A1 (continued)

Experiment length (days)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
	↑ 100%	Amaranthus retroflexus	abaxial	*↓35%	*↓ 23%	
			adaxial	*↓ 38%	*↓ 26%	
		Ambrosia artemisiifolia	abaxial	*↓ 11%	\leftrightarrow	
			adaxial	*↓ 24%	*↓ 25%	
		Setaria faberii	abaxial	\leftrightarrow	*↓ 21%	
			adaxial	*↓ 22%	*↓ 21%	
2199-35	† 94%	Lolium perenne	adaxial	\leftrightarrow	-	Ryle and Stanley, 1992 ^b
26	† 86%	Lycopersicum esculentum	abaxial	*↓ 17%	\leftrightarrow	Madsen, 1973 ^b
			adaxial	*↓ 14%	\leftrightarrow	
	† 814%	Lycopersicum esculentum	abaxial	*↓ 23%	\leftrightarrow	
			adaxial	*↓ 36%	\leftrightarrow	
$\sim \! 28$	1 33%	Lolium temultentum	adaxial	\leftrightarrow	-	Gay and Hauck, 1994 ^b
28	↑ 100%	Phaseolus vulgaris	abaxial	\leftrightarrow	\leftrightarrow	Radoglou and Jarvis, 1992 ^c
			adaxial	\leftrightarrow	\leftrightarrow	
~ 40	↑ 91%	Raphanus raphanistrum	abaxial	\leftrightarrow	\leftrightarrow	Case et al., 1998 ^b
45	↑ 71%	Anthyllis vulneraria	abaxial	*↓ 32%	*↓ 17%	Ferris and Taylor, 1994 ^b
			adaxial	\leftrightarrow	\leftrightarrow	
		Lotus corniculatus	abaxial	↑ 60%	\leftrightarrow	
			adaxial	↑ 40%	\leftrightarrow	
		Plantago media	abaxial	*↓ 20%	\leftrightarrow	
			adaxial	*↓ 36%	*↓ 12%	
		Sanguisorba minor	abaxial	↑ 175%	↑ 36%	
			adaxial	↑ 150%	↑ 213%	
45	↑ 100%	Vicia faba	abaxial	\leftrightarrow	\leftrightarrow	Radoglou and Jarvis, 1993 ^e
			adaxial	\leftrightarrow	\leftrightarrow	
45	↑ 168%	Glycine max	abaxial	† 38%	\leftrightarrow	Thomas and Harvey, 1983 [°]
			adaxial	\leftrightarrow	↔ • • • • •	
		Liquidambar styraciflua	abaxial	\leftrightarrow	† 30%	
		Zea mays(C_4)	abaxial	\leftrightarrow	\leftrightarrow	
			adaxial	↔	\leftrightarrow	5
~ 50	1 68%	Anthyllis vulneraria	abaxial	* ‡ 23%	\leftrightarrow	Bryant et al., 1998
		Sanguisorba minor	abaxial	\leftrightarrow	\leftrightarrow	
50	1 22%	Bromopsis erecta	abaxial	\leftrightarrow	\leftrightarrow	
50	$\downarrow \sim 32\%$	Avena sativa	abaxial	\leftrightarrow	-	Malone et al., 1993
				\leftrightarrow	-	
		Prosopis glandulso	abaxial	\leftrightarrow	-	
				\leftrightarrow	-	
		Schizachyrium	abaxial	\leftrightarrow	-	
		$scoparium(C_4)$	-11			
		1 ruicum aesitvum	adaxial	\leftrightarrow	-	
51	t 0201	Do alemania auticadaioa	adaxiai	\leftrightarrow	-	Woodword and Dearling 1007 ^b
54	93% † 100%	Boenmeria cylinarica	-	↔ +- L 007	-	woodward and Beering, 1997
50	100%	Tropacolum major	abaxial	*↓9% ↓↓40/-	*↓4% ∗↓100/-	beering and woodward, 1995
50	1860-	Palaraonium hostosum	abaxial	r ↓ 4%	↑↓ 10%	Kelly at $a = 1001^{b}$
57	100%	i etargonium nortorum	adaxial	↓ 500/-	-	Keny et al., 1991
60	1 200/-	Salix harbacca	auaxiai	↑↓ JU% ↓↑ 20%	-	Beerling et al 1005 ^b
00	↓ 29% ↑ 1000	<i>Sunx nerbucea</i>	combined	* 20% * 410	-	beening et al., 1993
60	1 00% 1 03 <i>0</i> -	Ochroma lagonus	abavial	r ↓ 41%	-	Oberbauer et al 1095 ^b
00	9370	ocnronia iagopus	adaxial	↔ ↔	-	00010auci ci al., 1903
63	1570%	Panicum tricanthum	auanial	* 1 220%	_	Tipping and Murroy 1000 ^b
03	13/%	\mathbf{P}_{anioum} anti-latel \mathbf{C}	abaxial	↑↓ ∠∠%0 ↑ 2 80/	-	ripping and multiay, 1999
		I anicum anilaolale(C_4)	avaxidi	20%	_	

16

Appendix A1 (continued)

Experiment length (days)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
< 66	↑ 100%	Gossypium hirsutum	abaxial	\leftrightarrow	\leftrightarrow	Reddy et al., 1998 ^b
			adaxial	\leftrightarrow	↔.	
72	f 89%	Lolium perenne	abaxial	Ĩ	* 1	Ferris et al., 1996°
80	100%	Betula pendula	abaxial	↔	\leftrightarrow	Wagner, 1998
90	100%	Quercus ilex	abaxial	* ↓ 21%	-	Paoletti et al., 1997
90-120	100%	Anaropogon gerarati(C_4)	abaxial	* 1 28%	-	Knapp et al., 1994
				1 / 5%	-	
		Salvia piicneri	adaxial	40% ↑ 125%	_	
02	100%	Populus trichogarma	adaxial	123%	-	Padaglay and Jamis 1000 ^b
92	100%	Fopulus inchocurpa	adaxial	\leftrightarrow	↔ ↔	Radogiou and Jarvis, 1990
03	57%	Ora sating	adaxial	1 20%	\smile	Powland Bamford et al. 1000 ^b
95	5270	Oryza saliva	adavial	↓ 2970 17%	_	Rowland-Dannold et al., 1990
	173%	Orvza sativa	abayial	↓ 17 <i>1</i> 0		
	11570	Oryza sanva	adaxial	\leftrightarrow		
105	186%	Pelargonium hortorum	abaxial	↔	_	Kellvetal 1991 ^b
105	1 100 //	I eta gontan nonoran	adaxial	\leftrightarrow		Keny et al., 1991
114	1 87%	Arachis hypogaea	abaxial	* 12%	_ ↔	Clifford et al 1995 ^b
114	1 0770	Muchis hypogueu	adaxial	* 16%	* 8%	
120	1 757%	Rhizophora mangle	abaxial	* 14%	-	Beerling 1994 ^b
120	1 131 10	Laguncularia racemosa	abaxial	* 31%	_	Beering, 1991
		Musa aniculata	abaxial	↔	_	
		musa apremara	adaxial	\leftrightarrow	_	
120	100%	Populus trichocarpa	abaxial	* 19%	* 31%	Ceulemans et al 1995 ^c
120	1 100 /0	i opulus intenoculpu	adaxial	↔	↔	Coulomans et al., 1995
		Populus deltoides	abaxial	* 27%	* 36%	
		i op inns denotides	adaxial	* 33%	↔ 0000	
120	100%	Ouercus petraea	abaxial	* 25%	* 14%	Kürschner et al., 1998 ^b
123	1 93%	Pentaclethra macroloba	abaxial	* 7%	_	Oberbauer et al., 1985 ^b
	1		adaxial	\leftrightarrow	_	
125	1 49%	Triticum aestivum	abaxial	\leftrightarrow	\leftrightarrow	Estiarte et al., 1994 [°]
			adaxial	\leftrightarrow	\leftrightarrow	,
135	100%	Prunus avium	abaxial	\leftrightarrow	_	Centritto et al., 1999 ^c
150	† 100%	Chlorophytum picturatum	abaxial	*↓7%	*↓23%	Beerling and Woodward, 1995 ^b
		Hedera helix	abaxial	*↓ 10%	*↓ 29%	e ·
		Hypoestes variegata	abaxial	* 1 9%	* 1 6%	
217	↑ 100%	Maranthes corymbosa	abaxial	*↓ 14%	-	Eamus et al., 1993 ^b
~ 240	↑ 98%	Picea sitchensis	abaxial	\leftrightarrow	_	Barton and Jarvis, 1999 ^b
270	114%	Pinus banksiana	_	\leftrightarrow	_	Stewart and Hoddinott, 1993 ^b
300	↑ 97%	Eucalyptus tetrodonta	abaxial	*↓ 20%	_	Berryman et al., 1994 ^{b,c}
~365	↑ 71%	Rumex obtusifolius	abaxial	*↓8%	_	Pearson et al., 1995 ^b
			adaxial	\leftrightarrow	_	
$\sim \! 400$	↑ 100%	Rhizophora mangle	abaxial	*↓ 16%	\leftrightarrow	Farnsworth et al., 1996 ^b
~425	↑ 71%	Bromus erectus	abaxial	\leftrightarrow	\leftrightarrow	Lauber and Körner, 1997 ^c
			adaxial	\leftrightarrow	\leftrightarrow	
		Plantago media	abaxial	\leftrightarrow	\leftrightarrow	
			adaxial	\leftrightarrow	\leftrightarrow	
		Sanguisorba minor	abaxial	\leftrightarrow	\leftrightarrow	
570	↑ 100%	Prunus avium	abaxial	\leftrightarrow	_	Atkinson et al., 1997 ^b
		Quercus robur	abaxial	↑ ~150%	-	
600	↑ 97%	Pinus palustris	-	\leftrightarrow	-	Pritchard et al., 1998 ^c

Appendix A1 (continued)

Experiment length (days)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
~730	↑ 100%	Picea abies Ouercus rubra	– abaxial	↔ ↑ 8%	-	Dixon et al., 1995 [°]
730 750 ~840 3 years	↑ 60% ↑ 97% ↑ 99% ↑ 60%	Tussilago farfara Mangifera indica Scirpus olneyi Pinus sylvestris	abaxial abaxial – abaxial adaxial	$ \begin{array}{c} - \\ * \downarrow 17\% \\ \leftrightarrow \\ * \downarrow 16\% \\ * \downarrow 18\% \end{array} $	* ↓ 26% 	Beerling and Woodward, 1997 ^b Goodfellow et al., 1997 ^b Drake, 1992 ^c Beerling, 1997 ^b
3 years 1155 ~5 years Meta- analysis	↑ 60% ↑ 50% ↑ ~82%	Ginkgo biloba Pseudotsuga menziesii Citrus aurantium 43 species (60% showed SD reductions)	abaxial abaxial abaxial	* $\downarrow 20\%$ * $\downarrow 20\%$ * \downarrow (9.0 $\pm 3.3\%$ s.e.)	*↓7% - -	Beerling et al., 1998a ^b Apple et al., 2000 ^b Estiarte et al., 1994 ^c Woodward and Kelly, 1995

* response inversely relates (P < 0.05) to CO₂ concentration.

 \leftrightarrow no significant change (P > 0.05).

- not reported.

^a Typically between 340 and 360 ppmV.
 ^b Plants grown in enclosed greenhouses or chambers.

^c Plants grown in open-top chambers (OTCs).

Appendix A2

Subfossil stomatal responses

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
#	↓ 5%	Salix herbacea	abaxial	\leftrightarrow	_	Beerling et al., 1992
			adaxial	* † 83%	-	
#	↓ 13%	Eucalyptus pauciflora	combined	* † 26%	-	Körner and Cochrane, 1985
#	↓ 6%	Griselinia littoralis	combined	\leftrightarrow	-	Körner et al., 1986
	↓ 13%	Nothofagus menziesii	abaxial	* † 21%	_	
	↓ 8%	Ranunculus grahamii	combined	\leftrightarrow	-	
#	↓ 10%	Vaccinium myrtillus	abaxial	↓ 20%	_	Woodward, 1986
		-	adaxial	* † 425%	_	
#	↓ 6%	Nardus stricta	abaxial	\leftrightarrow	_	Woodward and Bazzaz, 1988
			adaxial	* † 19%	_	
@	194%	Tussilago farfara	abaxial	_	*↓ 65%	Beerling and Woodward, 1997
@	† 100%	Scirpus lacustris	_	*↓ 19%	_	Bettarini et al., 1997
@	† 100%	Allium sphaerocephalon	abaxial	\leftrightarrow	_	Bettarini et al., 1998
	•	Buxus sempervirens	abaxial	\leftrightarrow	\leftrightarrow	
		Convolvulus arvensis	abaxial	\leftrightarrow	1 26%	
		Convolvulus cantabrica	abaxial	\leftrightarrow	\leftrightarrow	
		Convza canadensis	abaxial	* 1 26%	1 21%	
		Fraxinus ornus	abaxial	* 1 35%	\leftrightarrow	
		Geranium molle	abaxial	\leftrightarrow	\leftrightarrow	

Appendix A2 (continued)

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf SD response SI n		SI response	Source		
		Globularia punctata	abaxial	\leftrightarrow	\Leftrightarrow			
		*	adaxial	\leftrightarrow	\leftrightarrow			
		Hypericum perforatum	abaxial	\leftrightarrow	\leftrightarrow			
		Plantago lanceolata	abaxial	\leftrightarrow	\leftrightarrow			
		0	adaxial	\leftrightarrow	\leftrightarrow			
		Potentilla reptans	abaxial	\leftrightarrow	\leftrightarrow			
		Pulicaria sicula	abaxial	\leftrightarrow	\leftrightarrow			
		Ruscus aculeatus	abaxial	\leftrightarrow	_			
		Scabiosa columbaria	abaxial	\leftrightarrow	\leftrightarrow			
		Silene vulgaris	abaxial	\leftrightarrow	\leftrightarrow			
		Stachys recta	abaxial	*↓ 11%	\leftrightarrow			
		Trifolium pratense	abaxial	\leftrightarrow	\leftrightarrow			
@	↑ ~130%	Bauhinia multinervia	abaxial	↑ 62%	↑ 41%	Fernández et al., 1998		
			adaxial	*↓ 71%	*↓73%			
		Spathiphylum cannifolium	abaxial	\leftrightarrow	\leftrightarrow			
			adaxial	*↓ 72%	*↓ 85%			
@	1 40%	Quercus pubescens	abaxial	\leftrightarrow	\leftrightarrow	Miglietta and Rasci, 1993		
@	1 515%	Arbutus unedo	abaxial	*↓ 29%	*↓ 20%	Jones et al., 1995		
@	114%	Quercus ilex	abaxial	*↓ 26%	_	Paoletti et al., 1998		
@	↑ 50%	Boehmeria cylinderica	abaxial	\leftrightarrow	_	Woodward and Beerling, 1997		
@	↑ ~71%	Phragmites australis	abaxial	\leftrightarrow	_	van Gardingen et al., 1997		
			adaxial	*↓ 45%	_			
37	↑ 15% ^b	Metasequoia glyptostroboides	abaxial	\leftrightarrow	*↓ 17%	D.L. Royer, unpublished data		
43	↑ 15% ^b	Betula pendula	abaxial	*↓ 30%	*↓ 32%	Wagner et al., 1996		
70	↑ 18% [°]	Acer campestre	abaxial	\leftrightarrow	-	Beerling and Kelly, 1997		
		Acer pseudoplatanus	abaxial	\leftrightarrow	-			
		Alliaria petiolata	abaxial	1 22%	-			
		Allium ursinum	abaxial	\leftrightarrow	-			
		Alnus glutinosa	abaxial	132%	-			
		Anemone nemorosa	abaxial	\leftrightarrow	-			
		Arum maculatum	abaxial	*↓61%	-			
			adaxial	*↓ 80%	-			
		Betula pendula	abaxial	*↓39%	-			
		Betula pendula	abaxial	*↓ 43%	-			
		Betula pubescens	abaxial	*↓ 56%	-			
		Carpinus betulus	abaxial	↑ 13%	-			
		Castanea sativa	abaxial	*↓ 24%	-			
		Chamaenerion angustifolium	abaxial	↔ 	-			
		Circaea lutetiana	abaxial	* 1 25%	-			
		Cirsium palustre	abaxial	* 1 22%	-			
		Cornus sanguinea	abaxial	* 16%	_			
		Corylus avellana	abaxial	* 1 50%	-			
		Crataegus monogyna	abaxial	* 1 36%	_			
		Dipsacus fullonum	abaxial	54%	_			
			adaxial	550%	-			
		Epilobium montanum	abaxial	* ‡ 28%	-			
		E		↔ † 2201	-			
		Fagus sylvatica	abaxial	33%	-			
		r ugus sylvanca Enarinus arealaían	abaxial	↔ † 2001	-			
		r raxinus excelsior	aDaxial	39%	-			
		Geranium aissectum	aDaxial	↔ 	-			
		Geranium robertianum	aDaxial	*↓ 38% ↑	-			
		Cours subanus	adaxial	 + - 2107	-			
		Geum rubunum	adaxial	↑ ↓ ∠1%0	-			
		Glachoma hadaracaa	auaxial	* 1 23%	-			
		Hedera helix	abaxial	↑ 101%	_			
		πεαετα πεπλ	avanidi	10170	-			

Appendix A2 (continued)

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
		Heracleum sphondylium	abaxial	*↓ 14%	_	
			adaxial	\leftrightarrow	-	
		Hyacinthoides non-scripta	abaxial	↑ 56%	-	
			adaxial	\leftrightarrow	-	
		Hypericum hirsutum	abaxial	*↓ 11%	-	
		Hypericum perforatum	abaxial	*↓ 56%	-	
		Ilex aquifolium	abaxial	1 31%	-	
		Lamiastrum galeobdolon	abaxial	\leftrightarrow	-	
		Lathyrus pratensis	abaxial	↔	-	
		T ¹ , J	adaxial	* ↓ 38%	-	
		Ligustrum vulgare	abaxial	* 1 07%	-	
		Lonicera periciymenum	abaxial	* ↓ 21%	-	
		Luzula sylvalica	abaxial	* ↓ 44%	-	
		Lysimacnia nummularia	adaxial	* 1 50%	-	
		Marcurialis parannis	abavial	* 17%	_	
		Oralis acetosella	abaxial	* ↓ 1770 ↔	_	
		Populus nigra	abaxial	1 46%	_	
		Primula vulgaris	abaxial	* 14%	_	
		Prunella vulgaris	abaxial	* 1 47%	_	
			adaxial	* 1 55%	_	
		Prunus avium	abaxial	*↓ 20%	_	
		Pteridium aquilinum	abaxial	\leftrightarrow	_	
		Quercus petraea	abaxial	*↓ 14%	-	
		Quercus robur	abaxial	\leftrightarrow	-	
		Ranunculus ficaria	abaxial	*↓ 21%	-	
			adaxial	\leftrightarrow	-	
		Rosa canina	abaxial	*↓ 28%	-	
		Sambucus nigra(sun)	abaxial	\leftrightarrow	-	
		sambucus nigra(shade)	abaxial	↔	-	
		Scrophularia nodosa	abaxial	* 18%	-	
		Silene dioica	abaxial	49%	-	
		Sachus ausumania	adaxial	* ↓	-	
		Sorbus aucuparia Stallaria holostaa	abaxial	↔ * 1 200/-	-	
		Taxus baccata	abaxial	* ↓ 20%	-	
		Tilia cordata	abaxial	* 31%	_	
		Illmus alabra	abaxial	++ ↓ 5+70 ↔	_	
		Vaccinium myrtillus	abaxial	\leftrightarrow	_	
		raceman myranas	adaxial	\leftrightarrow	_	
		Vicia cracca	abaxial	*↓ 57%	_	
			adaxial	*↓ 20%	_	
		Vicia sepium	abaxial	*↓ 43%	_	
		Viola odorata	abaxial	\leftrightarrow	-	
91	↑ 20% ^c	Betula nana	abaxial	*↓ 29%	-	Beerling, 1993
98	↑ 24%°	Salix herbacea	combined	-	*↓ 21%	Rundgren and Beerling, 1999
110	↑ 25%°	Betula pubescens	abaxial	*↓ 45%	*↓ 35%	Kürschner, 1996
118	↑ 24% [°]	Quercus petraea	abaxial	-	*↓ 34%	van der Burgh et al., 1993
126	↑ 14% ^c	Salix herbacea	combined	*↓22%	-	Beerling et al., 1993
~127	1 24%°	Salix cinerea	abaxial	*↓ 22%	*↓17%	McElwain et al., 1995
144	1 23%	Salsola kali (C_4)	abaxial	-	\leftrightarrow	Raven and Ramsden, 1988
144	146	Ginkgo biloba	abaxial	\leftrightarrow	*↓44%	D.L. Royer, unpublished data
150	14% [°]	Salix herbacea	combined	* 1 26%	-	Beerling et al., 1995
131	1 21% ⁻	Quercus robur	abaxial	* ↓ 23% * ↓ 240	-	Deerling and Chaloner, 1993b
181	1 23% 1 26% ^c	Fagus solvatica	abayial	↑↓ ∠4% *↓ /20%	_	Pooletti and Gellini 1003
101	2070	r agus syrvanca Quercus iler	abaxial	* + 78%	_	i aoietti anu Ocifilli, 1993
		Zucreus ucr	abasiai	. + 2070		

Appendix A2 (continued)

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
190 200	↑ 27%° ↑ 24%°	Quercus petraea Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Populus nigra, Quercus petraea, Q. robur, Rhamnus catharticus, Tilia cordata	abaxial abaxial	*↓40% *↓40% (mean)	*↓ 31% -	Kürschner et al., 1996 Woodward, 1987
240	† 25%°	Alnus glutinosa, Amaranthus caudatus, Betula pendula, Buxus sempervirens, Ceratonia siliqua, Cynodon dactylon, Gentiana alpina, Helleborus foetidus, Juniperus communis, Papaver alpinum, Pinus pinea, P. uncinata, Pistacia lentiscus, Rhododendron ferrugineum	combined	*↓ 17% (mean)	↔ (mean)	Peñuelas and Matamala, 1990
3318	↑ 22% ^d	Olea europaea	abaxial	*↓33%	-	Beerling and Chaloner, 1993c

* response inversely relates (P < 0.05) to CO₂ concentration.

 \leftrightarrow no significant change (*P* > 0.05).

- not reported.

data from an altitudinal study; thus, the 'age' is however long the population has existed at the sampled altitudes.

@ data from a natural CO₂ spring area; thus, the 'age' is however long the population has existed at the location, assuming constant CO₂ emissions.

^a Typically between 340 and 360 ppmV; for herbarium studies, control corresponds with oldest material.

^b From direct measurements from Mauna Loa Observatory, Hawaii and South Pole (Keeling et al., 1995).

^c From Siple Station ice core (Neftel et al., 1985; Friedli et al., 1986).

^d From Taylor Dome ice core (Indermühle et al., 1999).

A			1.	
Δι	nn	en	niv	Δ
1 .	տր	CIII	uin	110

Fossil stomatal responses

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
9000	1 25% ^{b,c}	Salix herbacea	combined	_	* † 55%	Rundgren and Beerling, 1999
9190	↓ 27% ^b	Salix cinerea	abaxial	* † 57%	* † 32%	McElwain et al., 1995
9800	↑ 20% ^{d,j}	Betula pubescens, B. pendula	abaxial	-	*↓ 32% (mean)	Wagner et al., 1999
10750	↓ 25% ^{c,k}	Salix herbacea	combined	* † 27%	_	Beerling et al., 1995
(Allerød/Y. Dryas)	·					e ,
11500	↓ 24% ^b	Salix herbacea	combined	↓ 46%	\leftrightarrow	Beerling et al., 1992
13000	1 29% ^b	Betula nana	abaxial	* † 60%	_	Beerling, 1993
16500	↓ 47% ^b	Salix herbacea	combined	* † 54%	* † 25%	Beerling et al., 1993
28000	↓ 46% ^b	Pinus flexilis	_	* 1 31%	_	van de Water et al., 1994
140,000	↓ 47% ^b	Salix herbacea	combined	* † 73%	* ↑ 39%	Beerling et al., 1993
2.5 m.y.	↑ 4% ^e	Quercus petraea	abaxial	-	*↓ 10%	van der Burgh et al., 1993; Kürschner et al., 1996

Age of	CO ₂ levels	Species used	Side of	SD	SI	Source
material	(relative to		leaf	response	response	
(years)	controls ^a)					
6.5 m.v.	1 20% ^e	Ouercus petraea	abaxial	_	* † 55%	van der Burgh et al., 1993:
	• = • · · ·	2			1	Kürschner et al., 1996
	↓ 24% ^{e,1}	Fagus attenuata	abaxial	-	* † 41%	
6.5 m.y.	↓ 20% ^d	Betula subpubescens	abaxial	* † 72%	* † 45%	Kürschner, 1996
10 m.y.	↑ 4% ^e	Quercus petraea	abaxial	-	*↓9%	van der Burgh et al., 1993;
10 m v	, d	Datula aukanshanana	abovial	14	ala	Kürschner et al., 1996
10 m.y.	↔ + f	Betula subpubescens		* 🛶	* ↔	Kurschner, 1996
15.5 m.y.	I	Chamaecyparis linguaefolia,	combined	* (mean)	-	Huggins, 1985
		Cunningnamia chaneyi,				
		Metasequota occidentatis,				
		Taxodium dubium				
44 50 m v	1 130%g	Lindara cinnamomifolia	abavial	* 1 36%	* 1 17%	McElwain 1008
(M. Focene)	1 43 /0	Lindera sp. ⁿ	abaxiai	* 1 30 %	* ↓ +//0 (mean)	Weelwalli, 1998
(M. Locene)		Linuera sp.	abavial	(incan)	(incan) * 38%	
		Luseu Dournensis, L'adwardsii L'hirsuta ⁿ	abaxiai	(mean)	* 1 3070 (maan)	
160 185 m v	↑ 140% ^g	<i>E. euwarasii, E. hirsuia</i> <i>Brachynhyllum crucis</i> ⁿ	abavial	(incan)	(incan) * 30%	McElwain and Chaloner 1006
(M Jurassic)	14970	Brachyphynam cracis	abaxiai	* + 5470	* † 5770	Wellwain and Chaloner, 1990
(ini varassie)		B. mamillare ⁿ	abaxial	* 39%	* 52%	
		Ginkgo huttonii ⁿ	abaxial	* 1 32%	-	
160–185 m.v.	↑ 149% ^g	Baeira furcata ⁿ	abaxial	* 1 44%	_	McElwain, 1998
(M. Jurassic)	•			•		,
			adaxial	*↓67%	_	
		Ctenis exilis, C. kaneharai,	abaxial	*↓46%	14%	
		C. sulcicaulis ⁿ		(mean)	(mean)	
		Pagiophyllum kurrii,	abaxial	*↓36%	*↓ 39%	
		P. maculosum, P. ordinatum ⁿ		(mean)	(mean)	
~205 m.y.	↑ 69% ^h	Baeira boeggildiana ⁿ	abaxial	-	*↓ 44%	McElwain et al., 1999
(Latest Triassic)						
		B. minuta ⁿ	abaxial	-	*↓ 49%	
		B. paucipartiata ⁿ	abaxial	-	*↓ 25%	
		Baeira sp. ⁿ	abaxial	-	*↓ 36%	
		Ctenis minuta, C. nilssonii ⁿ	abaxial	-	*↓ 43%	
					(mean)	
		C. nilssonii ⁿ	abaxial	-	*↓ 21%	
		Ginkgo acosmica ⁿ	abaxial	-	*↓ 26%	
		G. obovatus ⁿ	abaxial	-	*↓ 57%	
~205 m.y.	↑ 567%"	Baeira longifolia"	abaxial	-	*↓60%	
(Earliest Jurassic)		—				
		B. spectabilis"	abaxial	-	* ↓ 71%	
		Nilssonia polymorpha"	abaxial	-	* 1 70%	
205 200	ø	Stenopteris dinosaurensis"	abaxial	-	* ↓ 11%	
285–290 m.y.	\leftrightarrow ⁵	Lebachia frondosa"	abaxial	120%	* ↔	McElwain and Chaloner, 1995
(E. Permian)	† 1	N	1 . 1	. 1 100	. 1 070	
290–303 m.y.	I	iveuropteris ovata	abaxial	* ↓ 40%	* ↓ 27%	Cleal et al., 1999
(L. Penn.)	, , g	Swillingtonia dontioulatan	abavial	1 4600	ч <i>г</i> ,	McElwein and Chalonar 1005
310 III.y. (L. Pellil.) 388_373 m v	, 61% ^{g,m}	Drananonhycus spinaeformis	abaxiai	+00% ∗↑ /ን%	* + 280%-	Edwards et al. 1008
(M Devonian)	1 01 /0	Drepanophycus spinaejotiius	-	···] +270	· 3070	Lawards et al., 1770
(iii. Devolution)						

Appendix A3 (continued)

Appendix	A3	(continued))
----------	----	-------------	---

Age of material (years)	CO ₂ levels (relative to controls ^a)	Species used	Side of leaf	SD response	SI response	Source
390–403 m.y.	↑ 657% ^g	Aglaophyton major ⁿ	combined	*↓ 99%	*↓84%	McElwain and Chaloner, 1995
(E. Devolitall)		Sawdonia ornata ⁿ	combined	*↓98%	*↓ 78%	

* response inversely relates (P < 0.05) to CO₂ concentration.

 \leftrightarrow no significant change (P > 0.05).

- not reported.

^a Typically between 340 and 360 ppmV.

^b From Vostok (Barnola et al., 1987) and Taylor Dome (Indermühle et al., 1999) ice cores.

- ^c From stomatal response of recent Salix herbacea, where CO₂ concentrations are known; values match ice core data (refer table footnote 9).
- ^d From stomatal responses of recent *Betula pubescens* and *Betula pendula*, where CO₂ concentrations are known.
- ^e From stomatal response of recent *Quercus petraea*, where CO₂ concentrations are known; values correlate with temperature curve.
- ^f From Freeman and Hayes, 1992; Cerling et al., 1997 (c.f. Pagani et al., 1999a).
- ^g From 'best estimate' of Berner (1994, 1998).
- ^h From stomatal ratios (McElwain and Chaloner, 1995, 1996; McElwain, 1998).
- ^j The control group is prior to the CO_2 spike (260 ppmV CO_2 (refer table footnote 11)).
- ^k The control group is the late Allerød material, prior to CO₂ drop (273 ppmV CO₂ (refer table footnote ¹⁰)).
- ¹ The control group is the 10 Ma material (370 ppmV CO_2 (refer table footnote 12)).
- ^m The control group is the 388 Ma material (2600 ppmV CO₂ (refer table footnote 14)).
- ⁿ Stomatal responses compared with corresponding Nearest Living Equivalents (NLEs); method described in text.

References

- Abrams, M.D., 1994. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiol. 14, 833–842.
- Andrews, J.E., Tandon, S.K., Dennis, P.F., 1995. Concentrations of carbon dioxide in the Late Cretaceous atmosphere. J. Geol. Soc. London 152, 1–3.
- Apple, M.E., Olszyk, D.M., Ormrod, D.P., Lewis, J., Southworth, D., Tingey, D.T., 2000. Morphology and stomatal function of Douglas fir needles exposed to climate change: elevated CO₂ and temperature. Int. J. Plant Sci. 161, 127–132.
- Ashton, P.M.S., Berlyn, G.P., 1994. A comparison of leaf physiology and anatomy of Quercus (section *Erythrobalanus* — Fagaceae) species in different light environments. Am. J. Bot. 81, 589–597.
- Atkinson, C.J., Taylor, J.M., Wilkins, D., Besford, R.T., 1997. Effects of elevated CO_2 on chloroplast components, gas exchange and growth of oak and cherry. Tree Physiol. 17, 319–325.
- Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., 1987. Vostok ice core provides 160,000-year record of atmospheric CO₂. Nature 329, 408–414.
- Beerling, D.J., 1993. Changes in the stomatal density of *Betula nana* leaves in response to increases in atmospheric carbon dioxide concentration since the late-glacial. Spec. Pap. Palaeontol. 49, 181–187.

- Beerling, D.J., 1994. Palaeo-ecophysiological studies on Cretaceous and Tertiary fossil floras. In: Boulter, M.C., Fisher, H.C. (Eds.), Cenozoic Plants and Climates of the Arctic. Springer, Berlin, pp. 23–33.
- Beerling, D.J., 1996. Palaeo-ecophysiological perspectives on plant responses to global change. Trends Ecol. Evol. 11, 20–23.
- Beerling, D.J., 1997. Carbon isotope discrimination and stomatal responses of mature *Pinus sylvestris* L. trees exposed in situ for three years to elevated CO₂ and temperature. Acta Œcol. 18, 697–712.
- Beerling, D.J., Birks, H.H., Woodward, F.I., 1995. Rapid lateglacial atmospheric CO₂ changes reconstructed from the stomatal density record of fossil leaves. J. Quat. Sci. 10, 379–384.
- Beerling, D.J., Chaloner, W.G., 1992. Stomatal density as an indicator of atmospheric CO₂ concentration. Holocene 2, 71–78.
- Beerling, D.J., Chaloner, W.G., 1993a. Evolutionary responses of stomatal density to global CO₂ change. Biol. J. Linnean Soc. 48, 343–353.
- Beerling, D.J., Chaloner, W.G., 1993b. The impact of atmospheric CO₂ and temperature change on stomatal density: observations from *Quercus robur* lammas leaves. Ann. Bot. 71, 231–235.
- Beerling, D.J., Chaloner, W.G., 1993c. Stomatal density responses of Egyptian *Olea europaea* L. leaves to CO₂ change since 1327 BC, Ann. Bot. 71, 431–435.
- Beerling, D.J., Chaloner, W.G., 1994. Atmospheric CO₂ changes since the last glacial maximum: evidence from the stomatal density record of fossil leaves. Rev. Palaeobot. Palynol. 81, 11–17.
- Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A., Tooley,

M.J., 1991. Tracking stomatal densities through a glacial cycle: their significance for predicting the response of plants to changing atmospheric CO_2 concentrations. Global Ecol. Biogeogr. Lett. 1, 136–142.

- Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A., Tooley, M.J., 1993. Stomatal density responds to the glacial cycle of environmental change. Proc. R. Soc. London B251, 133–138.
- Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A., Tooley, M.J., Woodward, F.I., 1992. Variations in the stomatal density of *Salix herbacea* L. under the changing atmospheric CO₂ concentrations of late- and post-glacial time. Philos. Trans. R. Soc. London B336, 215–224.
- Beerling, D.J., Kelly, C.K., 1997. Stomatal density responses of temperate woodland plants over the past seven decades of CO₂ increase: a comparison of Salisbury (1927) with contemporary data. Am. J. Bot. 84, 1572–1583.
- Beerling, D.J., McElwain, J.C., Osborne, C.P., 1998a. Stomatal responses of the living fossil *Ginkgo biloba* L. to changes in atmospheric CO₂ concentrations. J. Exp. Bot. 49, 1603–1607.
- Beerling, D.J., Woodward, F.I., 1995. Stomatal responses of variegated leaves to CO₂ enrichment. Ann. Bot. 75, 507–511.
- Beerling, D.J., Woodward, F.I., 1996. Palaeo-ecophysiological perspectives on plant responses to global change. Trends Ecol. Evol. 11, 20–23.
- Beerling, D.J., Woodward, F.I., 1997. Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot. J. Linn. Soc. 124, 137–153.
- Beerling, D.J., Woodward, F.I., Lomas, M.R., Wills, M.A., Quick, W.P., Valdes, P.J., 1998b. The influence of Carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment. Philos. Trans. R. Soc. London B353, 131–140.
- Berger, D., Altmann, T., 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in *Arabidopsis thaliana*. Genes Dev. 14, 1119–1131.
- Berner, R.A., 1994. Geocarb II: a revised model of atmospheric CO₂ over Phanerozoic time. Am. J. Sci. 294, 56–91.
- Berner, R.A., 1998. Sensitivity of Phanerozoic atmospheric CO₂ to paleogeographically induced changes in land temperature and runoff. In: Crowley, T.J., Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford University Press, New York, pp. 251–260.
- Berner, R.A., Canfield, D., 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361.
- Berner, R.A., Petsch, S.T., Lake, J.A., Beerling, D.J., Popp, B.N., Lane, R.S., Laws, E.A., Westley, M.B., Cassar, N., Woodward, F.I., Quick, W.P., 2000. Isotope fractionation and atmospheric oxygen: implications for Phanerozoic O₂ evolution. Science 287, 1630–1633.
- Berryman, C.A., Eamus, D., Duff, G.A., 1994. Stomatal responses to a range of variables in tree species grown with CO₂ enrichment. J. Exp. Bot. 45, 539–546.
- Bettarini, I., Miglietta, F., Raschi, A., 1997. Studying morphophysiological responses of Scirpus lacustris from naturally CO₂-enriched environments. In: Raschi, A., Miglietta, F., Tognetti, R., van Gardingen, P.R. (Eds.), Plant Responses to

Elevated CO₂Cambridge University Press, Cambridge, pp. 134–147.

- Bettarini, I., Vaccari, F.P., Miglietta, F., 1998. Elevated CO₂ concentrations and stomatal density: observations from 17 plant species growing in a CO₂ spring in central Italy. Global Change Biol. 4, 17–22.
- Boetsch, J., Chin, J., Ling, M., Croxdale, J., 1996. Elevated carbon dioxide affects the patterning of subsidiary cells in *Tradescantia* stomatal complexes. J. Exp. Bot. 47, 925–931.
- Bristow, J.M., Looi, A.-S., 1968. Effects of carbon dioxide on the growth and morphogenesis of *Marsilea*. Am. J. Bot. 55, 884– 889.
- Bryant, J., Taylor, G., Frehner, M., 1998. Photosynthetic acclimation to elevated CO₂ is modified by source:sink balance in three component species of chalk grassland swards grown in a free air carbon dioxide enrichment (FACE) experiment. Plant, Cell Environ. 21, 159–168.
- van der Burgh, J., Visscher, H., Dilcher, D.L., Kürschner, W.M., 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260, 1788–1790.
- Case, A.L., Curtis, P.S., Snow, A.A., 1998. Heritable variation in stomatal responses to elevated CO₂ in wild radish, *Raphanus raphanistrum* (Brassicaceae). Am. J. Bot. 85, 253–258.
- Centritto, M., Maonani, F., Lee, H.S.J., Jarvis, P.G., 1999. Interactive effects of elevated [CO₂] and drought on cherry (*Prunus avium*) seedlings. II. Photosynthetic capacity and water relations. New Phytol. 141, 141–153.
- Cerling, T.E., 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377– 400.
- Cerling, T.E., 1992. Use of carbon isotopes in paleosols as an indicator of the P(CO₂) of the paleoatmosphere. Global Biogeochem. Cycles 6, 307–314.
- Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158.
- Ceulemans, R., van Praet, L., Jiang, X.N., 1995. Effects of CO₂ enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (*Populus*). New Phytol. 131, 99–107.
- Cleal, C.J., James, R.M., Zodrow, E.L., 1999. Variation in stomatal density in the Late Carboniferous gymnosperm frond *Neuropteris ovata*. Palaios 14, 180–185.
- Clifford, S.C., Black, C.R., Roberts, J.A., Stronach, I.M., Singleton-Jones, P.R., Mohamed, A.D., Azam-Ali, S.N., 1995. The effect of elevated atmospheric CO₂ and drought on stomatal frequency in groundnut (*Arachis hypogaea* (L.)). J. Exp. Bot. 46, 847–852.
- Curtis, P.S., Wang, X., 1998. A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. Oecologia 113, 299–313.
- Dixon, M., Le Thiec, D., Garrec, J.-P., 1995. The growth and gas exchange response of soil-planted Norway spruce [*Picea abies* (L.) Karst.] and red oak (*Quercus rubra* L.) exposed to elevated CO₂ and to naturally occurring drought. New Phytol. 129, 265– 273.
- Drake, B.G., 1992. A field study of the effects of elevated CO2 on

ecosystem processes in a Chesapeake Bay Wetland. Aust. J. Bot. 40, 579–595.

- Eamus, D., Berryman, C.A., Duff, G.A., 1993. Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO₂ of *Maranthes corymbosa*, a tropical monsoon rain forest species. Aust. J. Plant Physiol. 20, 741–755.
- Edwards, D., Kerp, H., Hass, H., 1998. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49, 255–278.
- Ehleringer, J.R., Cerling, T.E., 1995. Atmospheric CO₂ and the ratio of intercellular to ambient CO₂ concentrations in plants. Plant Physiol. 15, 105–111.
- Ekart, D.D., Cerling, T.E., Montañez, I.P., Tabor, N.J., 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827.
- Elick, J.M., Mora, C.I., Driese, S.G., 1999. Elevated atmospheric CO₂ levels and expansion of early vascular land plants: stable isotope evidence from the Battery Point Fm. (Early to Middle Devonian), Gaspé Bay, Canada. GSA Abstracts with Programs, vol. 31, p. A-159.
- Estiarte, M., Peñuelas, J., Kimball, B.A., Idso, S.B., LaMorte, R.L., Pinter, P.J., Wall, G.W., Garcia, R.L., 1994. Elevated CO₂ effects on stomatal density of wheat and sour orange trees. J. Exp. Bot. 45, 1665–1668.
- Farnsworth, E.J., Ellison, A.M., Gong, W.K., 1996. Elevated CO₂ alters anatomy, physiology, growth, and reproduction of red mangrove (*Rhizophora mangle* L.). Oecologia 108, 599–609.
- Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. Planta 149, 78–90.
- Fernández, M.D., Pieters, A., Donoso, C., Tezara, W., Azkue, M., Herrera, C., Rengifo, E., Herrera, A., 1998. Effects of a natural source of very high CO₂ concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of *Spatiphylum cannifolium* and *Bauhinia multinervia*. New Phytol. 138, 689–697.
- Ferris, R., Nijs, I., Behaeghe, T., Impens, I., 1996. Elevated CO₂ and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Ann. Bot. 78, 489–497.
- Ferris, R., Taylor, G., 1994. Stomatal characteristics of four native herbs following exposure to elevated CO₂. Ann. Bot. 73, 447– 453.
- Freeman, K.H., Hayes, J.M., 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO₂ levels. Global Biogeochem. Cycles 6, 185–198.
- Frey, B., Scheidegger, C., Günthardt-Goerg, M.S., Matyssek, R., 1996. The effects of ozone and nutrient supply on stomatal response in birch (*Betula pendula*) leaves as determined by digital image-analysis and X-ray microanalysis. New Phytol. 132, 135–143.
- Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., Stauffer, B., 1986. Ice core record of the ${}^{13}C/{}^{12}C$ ratio of atmospheric CO₂ in the past two centuries. Nature 324, 237–238.
- Furukawa, A., 1997. Stomatal frequency of *Quercus myrsinaefolia* grown under different irradiances. Photosynthetica 34, 195–199.

van Gardingen, P.R., Grace, J., Jeffree, C.E., Byari, S.H., Miglietta,

F., Raschi, A., Bettarini, I., 1997. Long-term effects of enhanced CO₂-concentrations on leaf gas exchange: research opportunities using CO₂ springs. In: Raschi, A., Miglietta, F., Tognetti, R., van Gardingen, P.R. (Eds.), Plant Responses to Elevated CO₂. Cambridge University Press, Cambridge, pp. 69–86.

- Gaudillère, J.P., Mousseau, M., 1989. Short term effect of CO₂ on leaf development and gas exchange of young poplars (*Populus euramericana* cv. I 214). Oecol. Plant. 10, 95–105.
- Gay, A.P., Hauck, B., 1994. Acclimation of *Lolium temulentum* to enhanced carbon dioxide concentration. J. Exp. Bot. 45, 1133– 1141.
- Gay, A.P., Hurd, R.G., 1975. The influence of light on stomatal density in the tomato. New Phytol. 75, 37–46.
- Ghosh, P., Bhattacharya, S.K., Jani, R.A., 1995. Palaeoclimate and palaeovegetation in central India during the Upper Cretaceous based on stable isotope composition of the palaeosol carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 114, 285–296.
- Goodfellow, J., Eamus, D., Duff, G., 1997. Diurnal and seasonal changes in the impact on CO₂ enrichment on assimilation, stomatal conductance and growth in a long-term study of *Mangifera indica* in the wet–dry tropics of Australia. Tree Physiol. 17, 291–299.
- Heckenberger, U., Roggatz, U., Schurr, U., 1998. Effect of drought stress on the cytological status in *Ricinus communis*. J. Exp. Bot. 49, 181–189.
- Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K., 1995. Climate Change. The IPCC Scientific Assessment. Cambridge University Press, Cambridge.
- Huggins, L.M., 1985. Cuticular analyses and preliminary comparisons of some Miocene conifers from Clarkia, Idaho. In: Smiley, C.J. (Ed.), Late Cenozoic history of the Pacific Northwest. American Association for the Advancement of Science, San Francisco, pp. 113–138.
- Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., Stauffer, B., 1999. Holocene carbon-cycle dynamics based on CO₂ trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126.
- Jones, M.B., Brown, J.C., Raschi, A., Miglietta, F., 1995. The effects on *Arbutus unedo* L. of long-term exposure to elevated CO₂. Global Change Biol. 1, 295–302.
- Keeling, C.D., Whorf, T.P., Wahlen, M., van der Plicht, J., 1995. Interannual extremes in the rate of atmospheric carbon dioxide since 1980. Nature 375, 666–670.
- Kelly, D.W., Hicklenton, P.R., Reekie, E.G., 1991. Photosynthetic response of geranium to elevated CO₂ as affected by leaf age and time of CO₂ exposure. Can. J. Bot. 69, 2482–2488.
- Knapp, A.K., Cocke, M., Hamerlynck, E.P., Owensby, C.E., 1994. Effect of elevated CO₂ on stomatal density and distribution in a C4 grass and a C4 forb under field conditions. Ann. Bot. 74, 595–599.
- Koch, P.L., Zachos, J.C., Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319– 322.

- Körner, Ch., 1988. Does global increase of CO₂ alter stomatal density? Flora 181, 253–257.
- Körner, Ch., Bannister, P., Mark, A.F., 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69, 577– 588.
- Körner, Ch., Cochrane, P.M., 1985. Stomatal responses and water relations of *Eucalyptus pauciflora* in summer along an elevational gradient. Oecologia 66, 443–455.
- Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S., Sheehan, P.M., 1999. A weathering hypothesis for glaciation at high atmospheric pCO₂ during the Late Ordovician. Palaeogeogr., Palaeoclimatol., Palaeoecol. 152, 173–187.
- Kürschner, W.M., 1996. Leaf stomata as biosensors of paleoatmospheric CO₂ levels. LPP Contrib. Series 5, 1–153.
- Kürschner, W.M., 1997. The anatomical diversity of recent and fossil leaves of the durmast oak (*Quercus petraea* Lieblein/*Q*. *pseudocastanea* Goeppert) — implications for their use as biosensors of palaeoatmospheric CO₂ levels. Rev. Palaeobot. Palynol. 96, 1–30.
- Kürschner, W.M., Stulen, I., Wagner, F., Kuiper, P.J.C., 1998. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak [*Quercus petraea* (Fagaceae)] in response to environmental change. Ann. Bot. 81, 657–664.
- Kürschner, W.M., van der Burgh, J., Visscher, H., Dilcher, D.L., 1996. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO₂ concentrations. Mar. Micropaleontol. 27, 299–312.
- Kürschner, W.M., Wagner, F., Visscher, E.H., Visscher, H., 1997. Predicting the response of leaf stomatal frequency to a future CO₂-enriched atmosphere: constraints from historical observations. Geol. Rundsch. 86, 512–517.
- Lambers, H., Chapin, F.S., Pons, T.L., 1998. Plant Physiological Ecology. Springer, New York.
- Lauber, W., Körner, Ch., 1997. In situ stomatal responses to longterm CO₂ enrichment in calcareous grassland plants. Acta (Ecol. 18, 221–229.
- Lee, Y.I., 1999. Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong Formation, southeastern Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 150, 123–133.
- Lee, Y.I., Hisada, K., 1999. Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu, Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 127–138.
- Long, S.P., Osborne, C.P., Humphries, S.W., 1996. Photosynthesis, rising atmospheric carbon dioxide concentration and climate change. In: Breymeyer, A.I., Hall, D.O., Melillo, J.M., Ågren, G.I. (Eds.), Global Change: Effects on Coniferous Forests and Grasslands. Wiley, New York, pp. 121–159.
- Madsen, E., 1973. Effect of CO₂-concentration on the morphological, histological and cytological changes in tomato plants. Acta Agric. Scand. 23, 241–246.
- Malone, S.R., Mayeux, H.S., Johnson, H.B., Polley, H.W., 1993. Stomatal density and aperture length in four plant species grown across a subambient CO₂ gradient. Am. J. Bot. 80, 1413–1418.

- Masterson, J., 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–424.
- McElwain, J.C., 1998. Do fossil plants signal palaeoatmospheric CO₂ concentration in the geological past? Philos. Trans. R. Soc. London B 353, 83–96.
- McElwain, J.C., Beerling, D.J., Woodward, F.I., 1999. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390.
- McElwain, J.C., Chaloner, W.G., 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Ann. Bot. 76, 389–395.
- McElwain, J.C., Chaloner, W.G., 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11, 376–388.
- McElwain, J., Mitchell, F.J.G., Jones, M.B., 1995. Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. Holocene 5, 216–219.
- Miglietta, F., Raschi, A., 1993. Studying the effect of elevated CO₂ in the open in a naturally enriched environment in central Italy. Vegetatio 104/105, 391–400.
- Minnocci, A., Panicucci, A., Sebastiani, L., Lorenzini, G., Vitagliano, C., 1999. Physiological and morphological responses of olive plants to ozone exposure during a growing season. Tree Physiol. 19, 391–397.
- Mishra, M.K., 1997. Stomatal characteristics at different ploidy levels in *Coffea* L. Ann. Bot. 80, 689–692.
- Montañez, I.P., Tabor, N.J., Ekart, D., Collister, J.W., 1999. Evolution of Permian atmospheric pCO₂ as derived from latest Carboniferous through Permian paleosol carbonates, Midland and Paradox Basins, U.S.A. and northern Italian Alps. GSA Abstracts with Programs, vol. 31, p. A-326.
- Mora, C.I., Driese, S.G., Colarusso, L.A., 1996. Middle and Late Paleozoic atmospheric CO₂ levels from soil carbonate and organic matter. Science 271, 1105–1107.
- Mora, C.I., Driese, S.G., Seager, P.G., 1991. Carbon dioxide in the Paleozoic atmosphere: evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19, 1017–1020.
- Muchez, P., Peeters, C., Keppens, E., Viaene, W.A., 1993. Stable isotopic composition of paleosols in the Lower Visan of eastern Belgium: evidence of evaporation and soil-gas CO₂. Chem. Geol. 106, 389–396.
- Neftel, A., Moor, E., Oeschger, H., Stauffer, B., 1985. Evidence from polar ice cores for the increase in atmospheric CO₂ in the past two centuries. Nature 315, 45–47.
- Oberbauer, S.F., Strain, B.R., 1986. Effects of canopy position and irradiance on the leaf physiology and morphology of *Pentaclethra macroloba* (Mimosaceae). Am. J. Bot. 73, 409–416.
- Oberbauer, S.F., Strain, B.R., Fetcher, N., 1985. Effect of CO₂enrichment on seedling physiology and growth of two tropical tree species. Physiol. Plant. 65, 352–356.
- O'Leary, J.W., Knecht, G.N., 1981. Elevated CO₂ concentration increases stomata numbers in *Phaseolus vulgaris* leaves. Bot. Gaz. 142, 438–441.
- Pääkkönen, E., Vahala, J., Pohjola, M., Holopainen, T., Kärenlampi, L., 1998. Physiological, stomatal and ultrastructural ozone responses in birch (*Betula pendula* Roth.) are modified by water stress. Plant, Cell Environ. 21, 671–684.

- Pagani, M., Arthur, M.A., Freeman, K.H., 1999a. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292.
- Pagani, M., Freeman, K.H., Arthur, M.A., 1999b. Late Miocene atmospheric CO₂ concentrations and the expansion of C4 grasses. Science 285, 876–879.
- Paoletti, E., Gellini, R., 1993. Stomatal density variation in beech and holm oak leaves collected over the last 200 years. Acta (Ecol. 14, 173–178.)
- Paoletti, E., Miglietta, F., Raschi, A., Manes, F., Grossoni, P., 1997. Stomatal numbers in holm oak (*Quercus ilex* L.) leaves grown in naturally and artificially CO₂-enriched environments. In: Raschi, A., Miglietta, F., Tognetti, R., van Gardingen, P.R. (Eds.), Plant Responses to Elevated CO₂. Cambridge University Press, Cambridge, pp. 197–208.
- Paoletti, E., Nourrison, G., Garrec, J.P., Raschi, A., 1998. Modifications of the leaf surface structures of *Quercus ilex* L. in open, naturally CO₂-enriched environments. Plant, Cell Environ. 21, 1071–1075.
- Pearson, M., Davies, W.J., Mansfield, T.A., 1995. Asymmetric responses of adaxial and abaxial stomata to elevated CO₂: impacts on the control of gas exchange by leaves. Plant, Cell Environ. 18, 837–843.
- Pearson, P.N., Palmer, M.R., 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284, 1824– 1826.
- Peñuelas, J., Matamala, R., 1990. Changes in N and S leaf content, stomatal density and specific leaf area in 14 plant species during the last three centuries. J. Exp. Bot. 41, 1119–1124.
- Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436.
- Platt, N.H., 1989. Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W. Cameros Basin, N. Spain. Sedimentology 36, 665–684.
- Polley, H.W., Johnson, H.B., Marino, B.D., Mayeux, H.S., 1993. Increase in C3 plant water-use efficiency and biomass over Glacial to present CO₂ concentrations. Nature 361, 61–64.
- Polley, H.W., Johnson, H.B., Mayeux, H.S., 1992. Growth and gas exchange of oats (*Avena sativa*) and wild mustard (*Brassica kaber*) at subambient CO₂ concentrations. Int. J. Plant Sci. 153, 453–461.
- Poole, I., Weyers, J.D.B., Lawson, T., Raven, J.A., 1996. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell Environ. 19, 705–712.
- Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Bull. Geol. Soc. Am. 97, 1262–1269.
- Pritchard, S.G., Mosjidis, C., Peterson, C.M., Runion, G.B., Rogers, H.H., 1998. Anatomical and morphological alterations in longleaf pine needles resulting from growth in elevated CO₂: interactions with soil resource availability. Int. J. Plant Sci. 159, 1002–1009.
- de Queiroz, K., Gauthier, J., 1990. Phylogeny as a central principle

in taxonomy: phylogenetic definitions of taxon names. Syst. Zool. 39, 307–322.

- Radoglou, K.M., Jarvis, P.G., 1990. Effects of CO₂ enrichment on four poplar clones. II. Leaf structure properties. Ann. Bot. 65, 627–632.
- Radoglou, K.M., Jarvis, P.G., 1992. The effects of CO₂ enrichment and nutrient supply on growth, morphology and anatomy of *Phaseolus vulgaris* L. seedlings. Ann. Bot. 70, 245–256.
- Radoglou, K.M., Jarvis, P.G., 1993. Effects of atmospheric CO₂ enrichment on early growth of *Vivia faba*, a plant with large cotyledons. Plant, Cell Environ. 16, 93–98.
- Rahim, M.A., Fordham, R., 1991. Effect of shade on leaf and cell size and number of epidermal cells in garlic (*Allium sativum*). Ann. Bot. 67, 167–171.
- Ranasinghe, S., Taylor, G., 1996. Mechanism for increased leaf growth in elevated CO₂. J. Exp. Bot. 47, 349–358.
- Raven, J.A., Ramsden, H.J., 1988. Similarity of stomatal index in the C4 plant Salsola kali L. in material collected in 1843 and 1987: relevance to changes in atmospheric CO₂ content. Trans. Bot. Soc. Edinb. 45, 223–233.
- Reddy, K.R., Robana, R.R., Hodges, H.F., Liu, X.J., McKinion, J.M., 1998. Interactions of CO₂ enrichment and temperature on cotton growth and leaf characteristics. Environ. Exp. Bot. 39, 117–129.
- Retallack, G.J., 1997. Early forest soils and their role in Devonian global change. Science 276, 583–585.
- Robinson, J.M., 1994. Speculations on carbon dioxide starvation. Late Tertiary evolution of stomatal regulation and floristic modernization. Plant, Cell Environ. 17, 345–354.
- Rowland-Bamford, A.J., Nordenbrock, C., Baker, J.T., Bowes, G., Allen, L.H., 1990. Changes in stomatal density in rice grown under various CO₂ regimes with natural solar radiation. Environ. Exp. Bot. 30, 175–180.
- Rowson, J.M., 1946. The significance of stomatal index as a differential character. Part III. Studies in the genera *Atropa*, *Datura*, *Digitalis*, *Phytolacca* and in polyploid leaves. Quart. J. Pharm. Pharmaceut. 19, 136–143.
- Rundgren, M., Beerling, D., 1999. A Holocene CO₂ record from the stomatal index of sub-fossil *Salix herbacea* L. leaves from northern Sweden. Holocene 9, 509–513.
- Ryle, G.J.A., Stanley, J., 1992. Effect of elevated CO₂ on stomatal size and distribution in perennial ryegrass. Ann. Bot. 69, 563– 565.
- Salisbury, E.J., 1927. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos. Trans. R. Soc. London B 216, 1–65.
- Schoch, P.G., Zinsou, C., Sibi, M., 1980. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of *Vigna sinensis* L. I. Effect of light intensity. J. Exp. Bot. 31, 1211–1216.
- Sharma, G.K., Dunn, D.B., 1968. Effect of environment on the cuticular features in *Kalanchoe fedschenkoi*. Bull. Torrey Bot. Club 95, 464–473.
- Sharma, G.K., Dunn, D.B., 1969. Environmental modifications of leaf surface traits in *Datura stramonium*. Can. J. Bot. 47, 1211– 1216.
- Sinha, A., Stott, L.D., 1994. New atmospheric pCO2 estimates from

paleosols during the late Paleocene /early Eocene global warming interval. Global Planet. Change 9, 297–307.

- Smith, S., Weyers, J.D.B., Berry, W.G., 1989. Variation in stomatal characteristics over the lower surface of *Commelina communis* leaves. Plant, Cell Environ. 12, 653–659.
- Solárová, J., Pospíšilová, J., 1988. Stomatal frequencies in the adaxial and abaxial epidermes of primary bean leaves affected by growing irradiances. Acta Univ. Carolinae — Biol. 31, 101– 105.
- Spicer, R.A., 1981. The sorting and deposition of allochthonous plant material in a modern environment at Sillwood Lake, Sillwood Park, Berkshire, England. US Geol. Surv. Prof. Pap. 1143, 1–77.
- Stancato, G.C., Mazzoni-Viveiros, S.C., Luchi, A.E., 1999. Stomatal characteristics in different habitat forms of Brazilian species of *Epidendrum* (Orchidaceae). Nord. J. Bot. 19, 271–275.
- Stewart, J.D., Hoddinott, J., 1993. Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in *Pinus banksiana*. Physiol. Plant. 88, 493–500.
- Suchecky, R.K., Hubert, J.F., Birney de Wit, C.C., 1988. Isotopic imprint of climate and hydrogeochemistry on terrestrial strata of the Triassic–Jurassic Hartford and Fundy Rift Basins. J. Sediment. Petrol. 58, 801–811.
- Thomas, J.F., Harvey, C.N., 1983. Leaf anatomy of four species grown under continuous CO₂ enrichment. Bot. Gaz. 144, 303– 309.
- Tichá, I., 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica 16, 375–471.
- Tipping, C., Murray, D.R., 1999. Effects of elevated atmospheric CO₂ concentration on leaf anatomy and morphology in *Panicum* species representing different photosynthetic modes. Int. J. Plant Sci. 160, 1063–1073.
- Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999. ⁸⁷Sr/⁸⁶Sr, δ¹³C and δ¹⁸O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88.
- Wagner, F., 1998. The influence of environment on the stomatal frequency in *Betula*. LPP Contrib. Series 9, 1–102.

Wagner, F., Below, R., De Klerk, P., Dilcher, D.L., Joosten, H.,

Kürschner, W.M., Visscher, H., 1996. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO_2 increase. Proc. Natl Acad. Sci. USA 93, 11705–11708.

- Wagner, F., Bohncke, S.J.P., Dilcher, D.L., Kürschner, W.M., van Geel, B., Visscher, H., 1999. Century-scale shifts in early Holocene atmospheric CO₂ concentration. Science 284, 1971–1973.
- van de Water, P.K., Leavitt, S.W., Betancourt, J.L., 1994. Trends in stomatal density and ¹³C/¹²C ratios of *Pinus flexilis* needles during last glacial–interglacial cycle. Science 264, 239–243.
- Wiltshire, J.J.J., Wright, C.J., Colls, J.J., Craigon, J., Unsworth, M.H., 1996. Some foliar characteristics of ash trees (*Fraxinus* excelsior) exposed to ozone episodes. New Phytol. 134, 623– 630.
- Woodward, F.I., 1986. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70, 580–586.
- Woodward, F.I., 1987. Stomatal numbers are sensitive to increases in CO₂ from pre-industrial levels. Nature 327, 617–618.
- Woodward, F.I., 1988. The responses of stomata to changes in atmospheric levels of CO₂. Plants Today 1, 132–135.
- Woodward, F.I., Bazzaz, F.A., 1988. The responses of stomatal density to CO₂ partial pressure. J. Exp. Bot. 39, 1771–1781.
- Woodward, F.I., Beerling, D.J., 1997. Plant–CO₂ responses in the long term: plants from CO₂ springs in Florida and tombs in Egypt. In: Raschi, A., Miglietta, F., Tognetti, R., van Gardingen, P.R. (Eds.). Plant Responses to Elevated CO₂. Cambridge University Press, Cambridge, pp. 103–113.
- Woodward, F.I., Kelly, C.K., 1995. The influence of CO₂ concentration on stomatal density. New Phytol. 131, 311–327.
- Yapp, C.J., Poths, H., 1992. Ancient atmospheric CO₂ pressures inferred from natural goethites. Nature 355, 342–344.
- Yapp, C.J., Poths, H., 1996. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO₂ pressure. Earth Planet. Sci. Lett. 137, 71–82.
- Zacchini, M., Morini, S., Vitagliano, C., 1997. Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots. Plant, Cell, Tissue Organ Culture 49, 195–200.